Academia.eduAcademia.edu

Outline

Limit cycles in a quadratic discrete iteration

1992, Physica D: Nonlinear Phenomena

https://doi.org/10.1016/0167-2789(92)90086-3

Abstract

I study the truncated logistic equation as a map of D integers. The number of limit cycles and the size of longest cycle are averaged exhaustively over many values of D for parameter values a beyond the first accumulation point. Fits of these quantities are compared with estimates obtained from random maps; the results suggest some form of self-organization. I also present some analytical results on the existence and position of fixed points and a fast matrix method to enumerate limit cycles of arbitrary length for given a and D.

References (15)

  1. C. Beck and G. Roepstorff, Physica D 25 (1987) 173;
  2. C. Beck, Phys. Letl. A 136 (1989) 121.
  3. P.M. Binder and R.V. Jensen, Phys. Rev. A 34 (1986) 4460.
  4. P.M. Binder, Comput. Math. Appl. 21 (1991) 133.
  5. P. Cvitanovic, ed., Universality in Chaos (Hilger, Bristol, 1989).
  6. T. Erber, T.M. Rynne, W.F. Darsow and M.J. Frank, J. Comput. Phys. 49 (1983) 394.
  7. R.F. Fox, Phys. Rev. A 42 (1990) 1946.
  8. C. Grebogi, E. Ott and J.A. Yorke, Phys. Rev. A 38 (1988) 3688.
  9. B.A. Huberman and W.F. Wolff, Phys. Rev. A 32 (1985) 3768.
  10. E. Jen, J. Stat. Phys. 43 (1986) 219, 243; Commun. Math. Phys. 118 (1988) 569; 119 (1988) 13.
  11. Y.E. Levy, Phys. Lett. A 88 (1982) 1.
  12. R.M. May, Nature 261 (1976) 459.
  13. F. Robert, Discrete Iterations (Springer, Berlin, 1986).
  14. F. Robert, Comput. Math. Appl. B 12 (1986) 1259;
  15. C.J. Twining and P.M. Binder, J. Stat. Phys. 66 (1992) 381.