A Nonparametric Bayesian Approach to Inverse Problems
Abstract
We propose a new method for making inference about an unknown measure Γ(dλ) upon observing some values of the Fredholm integral g(ω) = k(ω, λ)Γ(dλ) of a known kernel k(ω, λ), using Lévy random fields as Bayesian prior distributions for modeling uncertainty about Γ(dλ). Inference is based on simulation-based MCMC methods. The method is illustrated with a problem in polymer chemistry.
References (15)
- Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables. Washington, D.C.: National Bureau of Standards.
- Anderssen, R. S. and Davies, A. R. (2001). Simple moving-average formulae for the direct recovery of the relaxation spectrum. J. Rheol. 45, 1-27.
- Anderssen, R. S. and Hansen, M. B. (to appear). Bayesian relaxation spectrum recovery.
- Berger, L. (1988). Untersuchung zum rheologischen Verhalten von Polybutadienen mit bimodaler Mol- massenverteilung. Ph.D. Thesis, Eidgenössische Technische Hochschule (ETH), Zurich.
- Boltzmann, L. (1876). Zur Theorie der elastischen Nachwirkung. Ann. Phys. Chem. 7, 624-654.
- Davies, A. R. and Anderssen, R. S. (1997). Sampling localization in determining the relaxation spectrum. J Non-Newtonian Fluid Mech. 73, 163-179.
- Feller, W. (1971). An Introduction to Probability Theory and its Application (vol 2), second edition. Chichester: Wiley.
- Fredholm, Erik I. (1900). Sur une nouvelle méthode pour la résolution du problèm de Dirichlet. In OEuvres complètes: publiées sous les auspices de la Kungliga svenska vetenskapsakademien par l'Institut Mit- tag-Leffler, 61-68, reprinted 1955. Malmö: Litos reprotryck.
- Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes. Berlin: Springer.
- Kirsch, A. (1996). An Introduction to the Mathematical Theory of Inverse Problems. New York: Springer.
- Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann. Statist. 22, 1701-1762.
- Tikhonov, A. N. (1963). Solution of incorrectly formulated problems and the regularization method. Soviet Doklady 4, 1035-1038.
- Wolpert, R. L., Hansen, M. B. and Ickstadt, K. (to appear). Inverse problems and a Lévy process solution.
- Wolpert, R. L. and Ickstadt, K. (1998a). Poisson/gamma random field models for spatial statistics. Biometrika 85, 251-267.
- Wolpert, R. L. and Ickstadt, K. (1998b). Simulation of Lévy random fields. In Practical Nonparametric and Semiparametric Bayesian Statistics (D. Dey, P. Müller and D. Sinha, eds.), New York: Springer, 227-242.