Academia.eduAcademia.edu

Outline

PART OF SPEECH N-GRAMS AND INFORMATION RETRIEVAL

Abstract

Distribution électronique Cairn.info pour Pub. linguistiques. © Pub. linguistiques. Tous droits réservés pour tous pays.

References (22)

  1. Bas, A., Denison, D., Keizer, E. & Popova, G. (eds.) (2004). Fuzzy Grammar, a Reader. Oxford, Oxford University Press.
  2. Brown, P.F., Della Pietra, V.J., deSouza, P.V., Lai, J.C., Mercer, R.L. (1992). Class-based n-gram models of natural language. Computational Linguistics, 18, 467-479.
  3. Blanco, R. & Barreiro, A. (2008). Probabilistic document length priors for information retrieval. In Proceedings of the 30 th European Conference on Information Retrieval (ECIR), Glasgow, Scotland (in press).
  4. Damerau, F.J. (1971). Markov Models and Linguistic Theory. Janua linguarum series minor 95, The Hague, Mouton.
  5. Feller, W. (1950). An Introduction to the Probability Theory and its Applications. New York, Wiley.
  6. Gallager, R.G. (1968). Information Theory and Reliable Communication. New York, Wiley.
  7. Good, I.J. (1968). The Estimation of Probabilities: an Essay of Modern Bayesian Methods. Cambridge, MIT Press.
  8. Jespersen, O. (1913). Sprogets Logik (The Logic of Language). Copenhagen, University of Copenhagen. Jespersen, O. (1929). The Philosophy of Grammar. London, Allen and Unwin.
  9. Karlgren, J. (1993). Syntax in information retrieval. In Proceedings of the 1 st Nordic Doctoral Symposium on Computational Linguistics, Copenhagen, Denmark.
  10. Kraaij, W., Westerveld, T. & Hiemstra, D. (2002). The importance of prior probabilities for entry page search. In Proceedings of the 25 th ACM SIGIR Conference on Research and Development in Information Retrieval, Tempere, Finland, 27-34.
  11. Lioma, C. (2008). Part of speech n-grams for information retrieval. PhD thesis, University of Glasgow.
  12. Lyons, J. (1977). Semantics. Vol. 2. Cambridge, Cambridge University Press.
  13. Marcus, M.P., Santorini, B. & Marcinkiewicz, M.A. (1993). Building a large annotated corpus of English: The Penn Treebank. Computational Linguistics, 19, 313-330.
  14. Ounis, I., Lioma, C., Macdonald, C. & Plachouras, V. (2007). Research directions in Terrier: A search engine for advanced retrieval on the Web. Novatica/UPGRADE The European Journal for the Informatics professional. Special Issue on Web Information Access, 49-56.
  15. Porter, M.F. (1980). An algorithm for suffix stripping. Program, 14, 130-137.
  16. Robertson, S. & Walker, S. (1994). Some simple approximations to the 2-poisson model for probabilistic weighted retrieval. In Proceedings of the 17 th ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, 232-241.
  17. Schmid, H. (1997). Probabilistic part-of-speech tagging using decision trees. In Proceedings of the conference on New Methods in Language Processing Studies, Manchester, UK, 154-164.
  18. Smeaton, A.F. (1986). Incorporating syntactic information into a document retrieval strategy: An investigation. In Proceedings of the 9 th Annual ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa, Italy, 103-113.
  19. Smeaton, A.F. (1999). Using NLP or NLP Resources for Information Retrieval Tasks. Natural Language Information Retrieval. Dordrecht, Kluwer.
  20. Spärck Jones, K. (1972). A statistical interpretation of term specificity and its application to retrieval. Journal of Documentation, 28(1), 11-21.
  21. Tait, J.I. & Oakes, M. (eds.) (2006). Proceedings of the workshop: How can computational linguistics improve information retrieval? In Proceedings of the CLIIR Workshop at the International Conference on Computational Linguistics-Association for Computational Linguistics (COLING- ACL) 2006, Sydney, Australia, v (preface).
  22. Tait, J.I. (ed.) (2005). Charting a New Course: Natural Language Processing and Information Retrieval. Essays in Honour of Karen Spärck Jones. The Information Retrieval Series, Vol. 16, Berlin, Springer Verlag.