Academia.eduAcademia.edu

Outline

A stream database server for sensor applications

2002

Abstract

We present a framework for stream data processing that incorporates a stream database se11Jer as a fundamental component. The server operates as the stream control iflterjace between arrays of distributed data stream sources and end-user clients thaJ access and analyze the streams. The underlying framework provides novel stream managemem and query processing mechanisms to support the online acquisition, management, storage, non-blocking query. and imegration of data streams for distributed muLti-sensor networks. In this paper, we define OUT stream model and stream representation for the stream database, and we describe the functionality alld implementation of key components of the stream processing framework, including the query processing interface for source streams, the stream manager, the stream buffer manager, non-blocking query execution, and a new class ofjoin aLgorithms for joining multipLe data streams constrained by a sliding time window. We conduct experiments using real data streams to evaluate the performance of the new aLgoritluns against traditional stream join aLgorithms. The experiments show significant performance improvements and aLso demonstrate the flexibility of our system ;n handling data streams. A muLti-sensor network appLicatioll for the intelligent detection of lwzardous materials ;s presented to illustrate the capabilities ofourframework.

References (41)

  1. A vour, R. and Hellerstein, J. Eddies: Continuously adaptive query processing. In Proceedings of the 2000 ACM SIGMOD lntematio"al Conference on Managemem of Data. Dallas. Tex.as. May 16-18,2000. Vol. 29. pp. 261-272. May, 2000.
  2. Arasu, A., Babcock, B., Babu. S., McAlister. J. and Widom, 1. Characterizing Memory Requirememsjor Queries over Continuous Data Streams. In Pmc. Of PODS 2002.
  3. Aref, W., Barbara, D., Johnson, S. and Mehrotra, S. Efficient Processing of Proximity Queries for Large Databases. In Proc. ofthe 11th ICDE, March, 1995.
  4. Aref, W., Elfeky, M. and. Elmagannid, A. Incremental. Online and Merge Mining of Partial Periodic Patterns in Time-8eries Databases. SubmiUted.
  5. Aref. W., Kamel, I. and Ghandeharizadeh. S. Disk scheduling in video editing systems. IEEE Trans. on Knowledge and Data Engineering. 13(6). pp. 933-950. NovemberlDecember 2001. [6J Aref. W., Catlin, A, Elmagarmid, A., Fan. I .. Hammad, M., I1yas, I., Marzouk. M., Zhu, X. Search and discovery in digital video libraries. CDS TR #02-005, Computer Sciences Department, Purdue University. February 2002.
  6. Aref, W., Catlin, A. Elmagarmid. A, Fan, 1.. Guo, I., Hamrnad, M., I1yas, I., Marzouk. M .• Prabhakar, S., Rezgui. A. Teoh. S .• Terzi, E., Tu, Y.• Vakali, A. and Zhu, X. A distributed server for continuous media. In ICDE'02 Proc. of the llf h International Conference 011 Data Engineering. February 26-March 1. San lose, California. February 2002.
  7. Babcock, B., Babu, S., Datar, M., Motwant, R. and Widom, I. Models and issues in data stream sytems. Invited talk PODS 2002.
  8. Babu. S. and Widom, I. Continuous queries over data streams. In SIGMOD Record. 30(3). September 2001.
  9. Berchtold, S.• Bahm, c., Jagadish, H., Kriegel, H-P. and Sander, J. Independent quantization: An index compression technique for high-dimensional data spaces. In ICDE'OO Proc. of the 16,h Intemational Conference on Data Engineering. San Diego, CA. pp. 577-588. February 2000.
  10. I] Bonnet, P., Gehrke, J. and Seshadri, P. Towards sensor database systems. In Proceedi1lgs of the Second lntemalional Conference On Mobile Data Management. Hong Kong. January 2001.
  11. Chen, I., DeWitt, D., Tian, F. and Wang Y. Niagracq: A scalable continuous query system for Internet databases. In Proc. of the 2000 ACM SIGMOD Intemational Conf. on Management ofData. May 16-18. Dallas, TX. Vol. 29. pp. 379-390. 2000.
  12. Datar, M., Glonis, A., Indyk, P. and Motwani, R. Maintaining Stream Statistics over Sliding Windows. In Proc. of the Thineemh Annual ACM-SlAM Symposium on Discrete Algorithms, 2002.
  13. DeWitt, D., Naughton, 1. and Schneider, D. An evaluation of non-equijoin algorithms. 11 h VLDB Conf. on Very Large Data Bases. September 1991.
  14. Elfeky, M., Aref, W., Atallah, M. and Elmagarmid, A. Periodicity detection in time-series databases. CDS TR #02-120. Computer Sciences Department. Purdue University. May 2002.
  15. Fan, J., Aref, W., Elmagarmid, A., Hacid, M-S., Marzouk, M. and Zhu, X. Multiview: Multi- level video content representation and retrieval. Journal of Electrical Imaging, 10(4). pp. 895- 908. October 2001.
  16. Fan, J. and Elmagarmid, A. Semi-automatic semantic algorithm for video object extraction and temporal tracking. Signal Processing: Image Communication. Vol. 17.2002. To appear.
  17. Fan, J., Hacid, M-S. and Elmagannid, A. Model-based video classification for hierarchical video access. Multimedia Tools and Applications. Vol. 15. October 2001.
  18. Florescu, D., Levy, A., Manolescu, I. and Suciu, D. Query optimization in the presence of limited access patterns. In Proceedings ofACM SIGMOD Conference. June 1999.
  19. Garcia-Molina, H., Ullman, J., and Widom, J. Database System Implementation. Prentice Hall,2ooo.
  20. Gehrke, 1., Korn, F. and Srivastava. On computing correlated aggregates over continual data streams. In Proceedings ofACM SIGMOD Conference. May 2001.
  21. Gilbert, A., Kotidis, Y., Muthukrishnanm, S. and Strauss, M. Surfing wavelets on streams: one-pass summaries for approximate aggregate queries. Tn Proc. of 27th VLDB Conference, September, 2001.
  22. Haas, J. and Hellerstein, 1. Ripple joins for online aggregation. In Proc. ACM SIGMOD Conference. 1999.
  23. Hammad, M., Aref, W. and Elmagarrnid, K. Joining Multiple Data Streams with Window Constraints. CDS TR #02-115, Computer Sciences Department, Purdue U'liversity. May 2002.
  24. Han, J., Dong, G.and Yin, Y. Efficient Mining of Partial Periodic Patterns in Time Series Databases. In Proc. of 1999 Int. COlif. 011 Data Engineering, Sydney, Australia, March 1999.
  25. Henzinger, M., Raghavan, P. and Rajagopalan, S. Computing on data streams. In Technical Note 1998-011. Digital Systems Research. 1998.
  26. Jagadish, H., Mumick, I. and Silberschatz, A. Yew Maintenance Issues for the Chronicle Data Model. In Proc. ofPODS. May, 1995.
  27. Jiang, H., Helal, A., Elmagarmid, A., and Joshi, A. Scene change detection for video database systems. Journal on Multimedia Systems, 6(2), pp.186-195. May 1998.
  28. Katayama. N. and Satoh, S. The SR-tree: An index structure for high dimensional nearest neighbor queries. SIGMOD Record, ACM Special [nterest Group on Management of Data. 26(2). 1997.
  29. Lu, H.. Ooi , B. and Tan, K. On the spatially partitioned temporal join. In Proc. of 20th VLDB Conference, Sept. 1994.
  30. Madden, S. and Franklin, M. Fjording the stream: An architecture for queries over streaming sensor data. In ICDE'02 Proc. of the ut h International Confererlce on Data Engineering. February 26-March 1. San Jose, California. February 2002.
  31. Madden. S.• Shah, M., HeUerstein,J., and Raman, V. Continuously Adaptive Continuous Queries over Streams. In Proc. of SIGMOD 2002.
  32. Reinwald, B., Pirahesh, H., Krishnamoorthy, G.• Lapis, G., Tran, T. and Vora, S. Heterogeneous query processing through SQL table functions. In ICDS'99 Proceedings of the 15' h International Co,ljerence on Data Engineering. March 23-26. Sydney, Australia. pp. 366- 373. 1999.
  33. Seshadri, P. Predator: A resource for database research. SIGMOD Record. 27(1). pp. 16-20. 1998.
  34. Seshadri, P., Limy. M. and Ramakrishnan, R. The design and implementation ofa sequence database system. In Proc. of22tll VLDB Co,ljerence, Sept., 1996.
  35. Sullivan, M. and Heybey, A. Tribeca: A system for managing large databases of network traffic. USENIX, New Orleans. LA. June 1998.
  36. Thomas, M., Carson. C. and Hellerstein, H. Creating a customized access method for blobworld. March 2000.
  37. Urhan, T. and Franklin, M. Xjoin: A reactively-scheduled pipelined join operator. [EEE Data Engineering Bulletin. 23(2). 2000.
  38. Urhan, T. and Franklin, M. Dynamic Pipeline Scheduling for Improving Interactive Query Perfromance. In Proc. ofVLDB Conference. 2001.
  39. Viglas, S., and Naughton. J. Rate-Based Query Optimization for Streaming Information Sources. In Proc. ACM SIGMOD Conference. 2002.
  40. Wilschut, A. and Apers. P. Dataflow query execution 10 a parallel main-memory environment. In Proc. ofthe 1'/ PDIS Conf December 1991.
  41. Zhang, D. Tsotras, V., and Seeger, B. Efficient temporal join processing using indices. In lCDE'02 Proc. of the 19h IllteT1Ultional Conference on Data Engineering. February 26-March 1. San Jose, California. February 2002.