Academia.eduAcademia.edu

Outline

Improving Stability of Decision Trees

2002, International Journal of Pattern Recognition and Artificial Intelligence

Abstract

Decision-tree algorithms are known to be unstable: small variations in the training set can result in different trees and different predictions for the same validation examples.

References (25)

  1. F. Attneave, Applications of Information Theory to Psychology, Holt, Rinehart and Winston , 1959.
  2. W. Bischof and T. Caelli, Learning Structural Descriptions of Patterns: A New Technique for Conditional Clustering and Rule Generation, Pattern Recognition, Vol. 27, No. 5, pp. 689-697, 1994.
  3. C.L. Blake & C.J. Merz, UCI Repository of machine learning databases [http://www.ics.uci.edu/~mlearn/MLRepository.html], Department of Information and Computer Science, University of California at Irvine, Irvine, CA, 1998.
  4. L. Breiman, J.H. Friedman, R.A. Olshen, & P.J. Stone, Classification and Regression Trees, Wadsworth, Belmont, CA, 1984.
  5. L. Breiman, Bagging Predictors, Machine Learning, vol. 24, pp. 123-140, 1996.
  6. K.J. Cios and N. Liu, A Machine Learning Method for Generation of a Neural Network Architecture: A Continuous ID3 Algorithm, IEEE Transactions on Neural Networks, Vol. 3, No. 2, pp. 280-291, 1992.
  7. T. M. Cover, Elements of Information Theory, Wiley, New York, 1991.
  8. P. Domingos, Knowledge Acquisition from Examples via Multiple Models., Proc. Fourteenth International Conference on Machine Learning, Nashville, TN, pp. 98-106, 1997a.
  9. P. Domingos, Why Does Bagging Work? A Bayesian Account and its Implications, Proc. the Third International Conference on Knowledge Discovery and Data Mining, Newport Beach, CA, pp. 155-158, 1997b.
  10. P. Domingos, Knowledge Discovery via Multiple Models, Intelligent Data Analysis, No. 2, pp. 187-202, 1998.
  11. S. E. Fahlman and C. Lebiere, The Cascade-Correlation Learning Architecture, Internal Report CMU-CS-90-100, Carnegie Mellon University, 1991.
  12. U. Fayyad and K. Irani, Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning, Proc. Thirteens International Joint Conference on Artificial Intelligence, San Mateo,1993.
  13. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, From Data Mining to Knowledge Discovery: An Overview. In Advances in Knowledge Discovery and Data Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds. AAAI/MIT Press, Menlo Park, CA, pp. 1-30, 1996.
  14. Y. Freund & R. E. Schapire, Experiments with a new boosting algorithm. Proc. Thirteenth International Conference on Machine Learning, pp. 148--156, Bari, Italy: Morgan Kaufmann, 1996.
  15. P. Kilpeläinen, Tree Matching Problems with Applications to Structured Text Databases, Ph.D. Dissertation, University of Helsinki, 1992.
  16. R. Kohavi and C-H. Li, Oblivious Decision Trees, Graphs, and Top-Down Pruning, Proc. of International Joint Conference on Artificial Intelligence (IJCAI), pages 1071-1077, 1995.
  17. H. Liu and H. Motoda, Feature Selection for Knowledge Discovery and Data Mining, Kluwer, Boston, 1998.
  18. O. Maimon and M. Last, Knowledge Discovery and Data Mining, The Info-Fuzzy Network (IFN) Methodology, Kluwer Academic Publishers, 2000.
  19. T.M. Mitchell, Machine Learning, McGraw-Hill, New York, 1997.
  20. M. Pelillo, K. Siddiqi, and S.W. Zucker, Matching Hierarchical Structures Using Association Graphs, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21, No. 11, pp. 1105-1120, 1999.
  21. D.S. Phatak and I. Koren, Connectivity and Performance Tradeoffs in the Cascade Correlation Learning Architecture, IEEE Transactions on Neural Networks, Vol. 5, No. 6, pp. 930-935, 1994.
  22. J.R. Quinlan, Induction of Decision Trees, Machine Learning, vol. 1, no. 1, pp. 81-106, 1986.
  23. J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA, 1993.
  24. C.R. Rao and H. Toutenburg, Linear Models: Least Squares and Alternatives, Springer- Verlag, Berlin, 1995.
  25. P. Turney, Bias and the Quantification of Stability, Machine Learning, no. 20, pp. 23- 33, 1995.