Academia.eduAcademia.edu

Outline

Matrix Expansions for Computing the Discrete Hartley Transform

2010, IEEE/SBrT International Telecommunication Symposium, ITS 2010

https://doi.org/10.14209/SBRT.2010.89

Abstract

A new fast algorithm for computing the discrete Hartley transform (DHT) is presented, which is based on the expansion of the transform matrix. The algorithm presents a better performance, in terms of multiplicative complexity, than previously known fast Hartley transform algorithms. A detailed description of the computation of DHTs with blocklengths 8 and 12 is shown. The algorithm is very attractive for blocklengths N ≥ 128.

References (8)

  1. Olejniczak, K. J. and Heydt, G. T. (eds.), Special Section on the Hartley Transform, Proceedings of the IEEE, vol. 82, No. 3, pp. 372-447, March 1994.
  2. Bracewell, R. N., "Discrete Hartley transform," J. Opt. Soc. Am. vol. 73, No. 12, pp. 1832-1835, 1983.
  3. Bracewell, R.N., The Fast Hartley Transform, Proceedings of the IEEE, vol. 72, No. 8, pp. 1010-1018, August 1984.
  4. Sorensen, S. V., Jones, D. L., Burrus, C. S. and Heideman, M. T., On Computing the Discrete Hartley Transform, IEEE Trans. Acoust., Speech and Signal Processing, vol. ASSP 33, No. 4, pp. 1231-1238, 1985.
  5. de Oliveira, H.M., Cintra, R.J.S., Campello de Souza, R. M., Multilevel Hadamard Decomposition of Discrete Hartley Transforms, XVIII Brazilian Telecommunications Symposium, SBrT'00, Gramado, RS, September, 2000.
  6. de Oliveira, H.M., Campello de Souza, R. M., A Fast Algorithm for Computing the Hartley/Fourier Spectrum, Proceeedings of the Brazilian Academy of Science, Rio de Janeiro, vol. 73, pp.468-468, 2001.
  7. Liu, J. G. et alli, Moment-based fast discrete Hartley transform, Signal Processing. vol. 83, No. 8, pp. 1749-1757, August 2003.
  8. Heideman, M.T. Multiplicative Complexity, Convolution and the DFT, Springer-Verlag, 1988.