Academia.eduAcademia.edu

Outline

Optical microscopy methods for understanding learning and memory

Abstract

Structural dynamics of dendritic spines is one of the key correlative measures of synaptic plasticity for encoding short-term and long-term memory. Optical studies of structural changes in brain tissue using con-focal microscopy face difficulties of scattering. This results in low signal-to-noise ratio and thus limiting the imaging depth to few tens of microns. Multiphoton microscopy (MpM) overcomes this limitation by using low-energy photons to cause localized excitation and achieve high resolution in all three dimensions. Multiple low-energy photons with longer wavelengths minimize scattering and allow access to deeper brain regions at several hundred microns. In this article, we provide a basic understanding of the physical phenomena that give MpM an edge over conventional microscopy. Further, we highlight a few of the key studies in the field of learning and memory which would not have been possible without the advent of MpM.

References (32)

  1. Ramón y Cajal, S., Sobre las fibras nerviosas de la capa molecular del cerebelo. Rev. Trimestral Histol. Normal Patol., 1888, 2, 33- 49.
  2. Woolley, C. S., Gould, E., Frankfurt, M. and McEwen, B. S., Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J. Neurosci., 1990, 10(12), 4035-4039.
  3. Denk, W., Strickler, J. H. and Webb, W. W., Two-photon laser scanning fluorescence microscopy. Science, 1990, 248(4951), 73-76.
  4. Engert, F. and Bonhoeffer, T., Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature, 1999, 399(6731), 66-70; http://-dx.doi.org/10.1038/19978.
  5. Yuste, R. and Denk, W., Dendritic spines as basic functional units of neuronal integration. Nature, 1995, 375(6533), 682-684; http://dx.doi.org/10.1038/-375682a0.
  6. Trachtenberg, J. T., Chen, B. E., Knott, G. W., Sanes, J. R., Welker, E. and Svoboda, K., Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature, 2002, 420(6917), 788-794; http://dx.doi.org/10.1038/nature01273.
  7. Holtmaat, A., Wilbrecht, L., Knott, G. W., Welker, E. and Svoboda, K., Experience-dependent and cell-type-specific spine growth in the neocortex. Nature, 2006, 441(7096), 979-983; http://dx.doi.org/10.1038/nature04783.
  8. Kasai, H., Fukuda, M., Watanabe, S., Hayashi-Takagi, A. and Noguchi, J., Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci., 2010, 33(3), 121-129; http://dx. doi.org/10.1016/j.tins.2010.01.001.
  9. Fu, M., Yu, X., Lu, J. and Zuo, Y., Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature, 2012, 483(7387), 92-95; http://dx.doi.org/10.1038/ nature10844.
  10. Zuo, Y., Lin, A., Chang, P. and Gan, W.-B., Development of long- term dendritic spine stability in diverse regions of cerebral cortex. Neuron, 2005, 46(2), 181-189; http://dx.doi.org/10.1016/j.neuron. 2005.04.001.
  11. Oheim, M., Beaurepaire, E., Chaigneau, E., Mertz, J. and Charpak, S., Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J. Neurosci. Methods, 2001, 111(1), 29-37.
  12. Theer, P. and Denk, W., On the fundamental imaging-depth limit in two-photon microscopy. J. Opt. Soc. Am. A Opt. Image Sci. Vis., 2006, 23(12), 3139-3149.
  13. Zito, K., Scheuss, V., Knott, G., Hill, T. and Svoboda, K., Rapid functional maturation of nascent dendritic spines. Neuron, 2009, 61(2), 247-258; http://-dx.doi.org/10.1016/j.neuron.2008. 10.054.
  14. Diaspro, A., Chirico, G. and Collini, M., Two-photon fluorescence excitation and related techniques in biological microscopy. Q. Rev. Biophys., 2005, 38(2), 97-166; http://dx.doi.org/10.1017/ S0033583505004129.
  15. Roger, A. W., Tsien, Y. and Ernst, L., Fluorophores for Confocal Microscopy: Photophysics and Photochemistry, Handbook of Bio- logical Confocal Microscopy, 2006, 3rd edn, pp. 338-352.
  16. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. R. and Kasai, H., Structural basis of long-term potentiation in single dendritic spines. Nature, 2004, 429(6993), 761-766; http://dx.doi.org/ 10.1038/nature02617.
  17. Xia, W., Zhou, Y. and Shi, M., Advances in two-photon imaging technology. Zhongguo Yi Liao Qi Xie Za Zhi, 2011, 35(3), 204- 208.
  18. Kobat, D., Horton, N. G. and Xu, C., In vivo two-photon micro- scopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt., 2011, 16(10), 106014; http://-dx.doi.org/10.1117/1.3646209.
  19. Horton, N. G., Wang, K., Kobat, D., Clark, C. G., Wise, F. W., Schaffer, C. B. and Xu, C., In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature Pho- ton., 2013, 7, 205-209.
  20. Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K. and Tonegawa, S., Optogenetic stimulation of a hippocampal ram activates fear memory recall. Nature, 2012, 484(7394), 381-385; http://dx.doi.org/10.1038/nature11028.
  21. Harvey, C. D., Yasuda, R., Zhong, H. and Svoboda, K., The spread of ras activity triggered by activation of a single dendritic spine. Science, 2008, 321(5885), 136-140; http://dx.doi.org/ 10.1126/science.1159675.
  22. Murakoshi, H., Wang, H. and Yasuda, R., Local, persistent activa- tion of Rho GTPases during plasticity of single dendritic spines. Nature, 2011, 472(7341), 100-104; http://dx.doi.org/10.1038/ nature09823.
  23. Lee, S.-J. R., Escobedo-Lozoya, Y., Szatmari, E. M. and Yasuda, R., Activation of camkii in single dendritic spines during long- term potentiation. Nature, 2009, 458(7236), 299-304; http://dx. doi.org/10.1038/nature07842.
  24. Helmchen, F., Fee, M. S., Tank, D. W. and Denk, W., A miniature head-mounted two-photon microscope high-resolution brain imaging in freely moving animals. Neuron, 2001, 31(6), 903-912.
  25. Barretto, R. P. J. and Schnitzer, M. J., In vivo optical microendo- scopy for imaging cells lying deep within live tissue. Cold Spring Harbor Protocol, 2012, 2012(10), 1029-1034; http://dx.doi. org/10.1101/pdb.top071464.
  26. Ziv, Y. et al., Long-term dynamics of ca1 hippocampal place codes. Nature Neurosci., 2013, 16(3), 264-266; http://dx.doi. org/10.1038/nn.3329.
  27. Dombeck, D. A., Graziano, M. S. and Tank, D. W., Functional clustering of neurons in motor cortex determined by cellular reso- lution imaging in awake behaving mice. J. Neurosci., 2009, 29(44), 13751-13760; http://dx.doi.org/10.1523/-JNEUROSCI. 2985-09.2009.
  28. Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. and Tank, D. W., Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nature Neurosci., 2010, 13(11), 1433-1440; http://dx.doi.org/10.1038/nn.2648.
  29. Dombeck, D. A., Khabbaz, A. N., Collman, F., Adelman, T. L. and Tank, D. W., Imaging largescale neural activity with cellular resolution in awake, mobile mice. Neuron, 2007, 56(1), 43-57; http://dx.doi.org/10.1016/j.neuron.2007.08.003.
  30. Dombeck, D. A. and Reiser, M. B., Real neuroscience in virtual worlds. Curr. Opin. Neurobiol., 2012, 22(1), 3-10; http://dx. doi.org/10.1016/j.conb.2011.10.015.
  31. Harvey, C. D., Collman, F., Dombeck, D. A. and Tank, D. W., Intracellular dynamics of hippocampal place cells during virtual navigation. Nature, 2009, 461(7266), 941-946; http://dx.doi.org/ 10.1038/nature08499.
  32. Xu, C. and Webb, W. W., Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am., 1996, 13, 481-491.