DL-FOIL concept learning in description logics
2008
Abstract
In this paper we focus on learning concept descriptions expressed in Description Logics. After stating the learning problem in this context, a FOIL-like algorithm is presented that can be applied to general DL languages, discussing related theoretical aspects of learning with the inherent incompleteness underlying the semantics of this representation. Subsequently we present an experimental evaluation of the implementation of this algorithm performed on some real ontologies in order to empirically assess its performance.
References (427)
- AKK + 97] Achlioptas, D., Kirousis, L.M., Kranakis, E., Krizanc, D., Molloy, M.S.O., Stamatiou, Y.C.: Random constraint satisfaction: A more accurate picture. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 107-120. Springer, Heidelberg (1997)
- Alphonse, E.: Macro-operators revisited in inductive logic programming. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 8-25. Springer, Heidelberg (2004)
- Alphonse, E., Osmani, A.: On the connection between the phase transi- tion of the covering test and the learning success rate. Machine Learning Journal 70(2-3), 135-150 (2008)
- Alphonse, E., Rouveirol, C.: Extension of the top-down data-driven strat- egy to ILP. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 49-63. Springer, Heidelberg (2007)
- Botta, M., Giordana, A., Saitta, L., Sebag, M.: Relational learning as search in a critical region. Journal of Machine Learning Research 4, 431- 463 (2003)
- Fürnkranz, J., Flach, P.: An analysis of rule evaluation metrics. In: Proc. 20th International Conference on Machine Learning, pp. 202-209. AAAI Press, Menlo Park (2003)
- Fürnkranz, J.: Pruning algorithms for rule learning. Mach. Learn. 27(2), 139-172 (1997)
- Giordana, A., Botta, M., Saitta, L.: An experimental study of phase tran- sitions in matching. In: Proc. of the 16th International Joint Conference on Artificial Intelligence, pp. 1198-1203
- Gottlob, G., Leone, N., Scarcello, F.: On the complexity of some inductive logic programming problems. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 17-32. Springer, Heidelberg (1997)
- Gottlob, G.: Subsumption and implication. Information Processing Let- ters 24(2), 109-111 (1987)
- Giordana, A., Saitta, L.: Phase transitions in learning relations. Machine Learning 41, 217-225 (2000)
- Haussler, D.: Learning conjunctive concepts in structural domains. Ma- chine Learning 4(1), 7-40 (1989)
- Hogg, T., Williams, C.P.: The hardest constraint problems: A double phase transition. Artificial Intelligence 69(1-2), 359-377 (1994)
- Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory. The MIT Press, Cambridge (1994)
- Mitchell, T.M.: Generalization as search. Artificial Intelligence 18, 203-226 (1982)
- Muggleton, S.: Inverse entailment and PROGOL. New Generation Com- puting 13, 245-286 (1995)
- Pearl, J.: Heuristics. Addison-Wesley, Reading (1985)
- Plotkin, G.: A note on inductive generalization. In: Machine Intelligence, pp. 153-163. Edinburgh University Press (1970)
- Quinlan, J.R.: Determining literals in inductive logic programming. In: Proc. of the 12th International Joint Conference on Artificial Intelligence, Sydney, New South Wales, Australia, pp. 746-750. Springer, Heidelberg (1991)
- Richards, B.L., Mooney, R.J.: Learning relations by pathfinding. In: Proc. of the Tenth National Conference on Artificial Intelligence, San Jose, Cal- ifornia, pp. 723-738. AAAI Press/MIT Press (1992)
- Smith, B.M., Dyer, M.E.: Locating the phase transition in binary con- straint satisfaction problems. Artificial Intelligence 81(1-2), 155-181 (1996)
- Serra, A., Giordana, A., Saitta, L.: Learning on the phase transition edge. In: Nebel, B. (ed.) Proc. of the 7th Int. Conf. on Artificial Intelligence, pp. 921-926
- Smith, B.M.: Constructing an asymptotic phase transition in ran- dom binary constraint satisfaction problems. Theoretical Computer Sci- ence 265(1-2), 265-283 (2001)
- Silverstein, G., Pazzani, M.J.: Relational cliches: Constraining constructive induction during relational learning. In: Proc. of the 8th Int. Workshop on Machine Learning, pp. 203-207. Morgan Kaufmann, San Francisco (1991)
- Srinivasan, A.: A learning engine for proposing hypotheses (Aleph) (1999), http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph
- Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: Random constraint satisfaction: Easy generation of hard (satisfiable) instances. Artif. In- tell. 171(8-9), 514-534 (2007)
- Xu, K., Li, W.: Exact phase transitions in random constraint satisfaction problems. J. Artif. Intell. Res (JAIR) 12, 93-103 (2000) References
- Appice, A.: Learning Relational model Trees. PhD thesis, Department of Computer Science, University of Bari, Bari, Italy (2005)
- Blockeel, H.: Top-down induction of first order logical decision trees. PhD thesis, Department of Computer Science, Katholieke Universiteit, Leuven, Belgium (1998)
- Blockeel, H., Page, D., Srinivasan, A.: Multi-instance tree learning. In: Raedt, L.D., Wrobel, S. (eds.) International Conference on Machine Learning, vol. 119, pp. 57- 64. ACM, New York (2005)
- Breiman, L., Friedman, J., Olshen, R., Stone, J.: Classification and regression tree. Wadsworth & Brooks (1984)
- Davis, J., Costa, V.S., Ray, S., Page, D.: An integrated approach to feature inven- tion and model construction for drug activity prediction. In: Ghahramani, Z. (ed.) International Conference on Machine Learning, vol. 227, pp. 217-224. ACM, New York (2007)
- Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1-2), 31-71 (1997)
- Dooly, D.R., Zhang, Q., Goldman, S.A., Amar, R.A.: Multiple-instance learning of real-valued data. Journal of Machine Learning Research 3, 651-678 (2002)
- Draper, N.R., Smith, H.: Applied regression analysis. John Wiley & Sons, Chich- ester (1982)
- Driessens, K., Džeroski, S.: Combining model-based and instance-based learning for first order regression. In: Raedt, L.D., Wrobel, S. (eds.) International Conference on Machine Learning, ICML 2005, pp. 193-205. ACM, New York (2005)
- Džeroski, S., Blockeel, H., Kramer, S., Kompare, B., Pfahringer, B., Van Laer, W.: Experiments in predicting biodegradability. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 80-91. Springer, Heidelberg (1999)
- Džeroski, S., Lavrač, N.: Relational Data Mining. Springer, Heidelberg (2001)
- Džeroski, S., Todoroski, L., Urbancic, T.: Handling real numbers in inductive logic programming: A step towards better behavioural clones. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp. 283-286. Springer, Heidelberg (1995)
- Hardle, W.: Applied nonparametric Regression. Cambridge University Press, Cam- bridge (1990)
- Kramer, S.: Relational Learning vs. Propositionalization: Investigations in Induc- tive Logic Programming and Propositional Machine Learning. PhD thesis, Vienna University of Technology, Vienna, Austria (1999)
- Kramer, S., Pfahringer, B., Helma, C.: Stochastic propositionalization of non- determinate background knowledge. In: Page, D.L. (ed.) ILP 1998. LNCS, vol. 1446, pp. 80-94. Springer, Heidelberg (1998)
- Maron, O., Lozano-Perez, T.: A framework for multi-instance learning. Advanced in Neural Information Processing Systems
- Orkin, M., Drogin, R.: Vital Statistics. McGraw-Hill, New York (1990)
- Ray, S., Page, D.: Multiple instance regression. In: Brodley, C.E., Danyluk, A.P. (eds.) International Conference on Machine Learning, pp. 425-432. Morgan Kauf- mann, San Francisco (2001)
- Saith, R., Sergent, I.: Embryo selection for transfer in human IVF. Assist Reprod. Rev. 5, 145-154 (1995)
- Srinivasan, A., Camacho, R.: Numerical reasoning with an ilp system capable of lazy evaluation and customised search. J. Log. Program 40(2-3), 185-213 (1999)
- Srinivasan, A., Muggleton, S., King, R.D., Sternberg, M.J.E.: Mutagenesis: ILP experiments in a non-determinate biological domain. In: Wrobel, S. (ed.) Interna- tional Workshop on Inductive Logic Programming, pp. 217-232 (1994)
- Vens, C., Ramon, J., Blockeel, H.: Remauve: A relational model tree learner. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 424-438. Springer, Heidelberg (2007)
- Zhang, Q., Goldman, S.: EM-DD: An improved multiple-instance learning tech- nique. In: Neural Information Processing Systems (2001) References
- Turing, A.: On Computable Numbers, with an Application to the Entschei- dungsproblem (7936). The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life, Plus the Secrets of Enigma (2004)
- Kazakov, D., Bate, I.: Towards new methods for developing real-time systems: Automatically deriving loop bounds using machine learning. In: Proceedings of the 11th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (2006)
- Thesing, S., Souyris, J., Heckmann, R., Randimbivololona, F., Langenbach, M., Wilhelm, R., Ferdinand, C.: An abstract interpretation-based timing validation of hard real-time avionics software. In: Proceedings of the International Conference on Dependable Systems and Networks, pp. 625-632 (2003)
- Coen-Porisini, A., Denaro, G., Ghezzi, C., Pezzè, M.: Using symbolic execution for verifying Safety-Critical systems. In: Proceedings of the 8th European soft- ware engineering conference held jointly with 9th ACM SIGSOFT international symposium on Foundations of software engineering, pp. 142-151 (2001)
- Engblom, J.: Analysis of the execution time unpredictability caused by dynamic branch prediction. In: Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 152-159 (2003)
- Colin, A., Puaut, I.: Worst case execution time analysis for a processor with branch prediction. The Journal of Real-Time Systems 18(2-3), 249-274 (2000)
- Healy, C., Arnold, R., Müller, F., Whalley, D., Harmon, M.: Bounding pipeline and instruction cache performance. IEEE Transactions on Computers 48(1) (1999)
- Li, Y.T.S., Malik, S.: Performance analysis of embedded software using implicit path enumeration. In: Proceedings of the 32nd Design Automation Conference, pp. 456-461 (1995)
- McMinn, P.: Search-based software test data generation: a survey. Software Testing, Verification & Reliability 14(2), 105-156 (2004)
- Wegener, J., Sthamer, H., Jones, B., Eyres, D.: Testing real-time systems using genetic algorithms. Software Quality Journal 6(2), 127-135 (1997)
- Muggleton, S.: Learning from Positive Data. In: Muggleton, S. (ed.) ILP 1996. LNCS, vol. 1314, pp. 358-376. Springer, Heidelberg (1997)
- Srinivasan, A.: The Aleph Manual. Computing Laboratory. Oxford University Press, Oxford (2000)
- Ernst, M.: Dynamically Discovering Likely Program Invariants. PhD thesis, Uni- versity of Washington (2000)
- Todorovski, L., Dzeroski, S.: Declarative bias in equation discovery. In: Proceed- ings of the Fourteenth International Conference on Machine Learning, pp. 376-384 (1997)
- Chapman, R.: Static Timing Analysis and Program Proof. PhD thesis, Department of Computer Science, University of York (1995)
- Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. s. n (1931)
- Srinivasan, A., Camacho, R.: Numerical reasoning with an ILP system capable of lazy evaluation and customised search. The Journal of Logic Programming 40(2-3), 185-213 (1999)
- Atkinson, K.: An introduction to numerical analysis. John Wiley, Chichester (1989)
- Bate, I., Kazakov, D.: New directions in worst-case execution time analysis. In: IEEE Congress on Evolutionary Computation (IEEE CEC 2008) within 2008 IEEE World Congress on Computational Intelligence (WCCI 2008) (2008)
- Smith, J.: A study of branch prediction strategies. In: Proceedings of the 8th International Symposium on Computer Architecture, pp. 135-148 (1981) References
- Besag, J.: Statistical analysis of non-lattice data. Statistician 24, 179-195 (1975)
- Davis, J., Burnside, E., de Castro Dutra, I., Page, D., Santos Costa, V.: An inte- grated approach to learning Bayesian networks of rules. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 84-95. Springer, Heidelberg (2005)
- Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proc. of 23rd Intl. Conf. on Machine Learning, pp. 233-240 (2006)
- Dehaspe, L.: Maximum entropy modeling with clausal constraints. In: Proc. of ILP 1997, pp. 109-124 (1997)
- Della Pietra, S., Pietra, V.D., Laferty, J.: Inducing features of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 380-392 (1997)
- De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26, 99-146 (1997)
- De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.: Probabilistic Inductive Logic Programming -Theory and Applications. Springer, Heidelberg (2008)
- Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29, 103-130 (1997)
- Friedman, J.H.: On bias, variance, 0/1 -loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery 1, 55-77 (1997)
- Getoor, L., Taskar, B.: Introduction to statistical relational learning. MIT Press, Cambridge (2007)
- Greiner, R., Su, X., Shen, S., Zhou, W.: Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Machine Learning 59, 297-322 (2005)
- Grossman, D., Domingos, P.: Learning bayesian network classiers by maximizing conditional likelihood. In: Proc. 21st Int'l Conf. on Machine Learning, pp. 361-368. ACM Press, Banf (2004)
- Hoos, H.H., Stutzle, T.: Stochastic local search: Foundations and applications. Morgan Kaufmann, San Francisco (2005)
- Kok, S., Domingos, P.: Learning the structure of markov logic networks. In: Proc, 22nd Int'l Conf. on Machine Learning, pp. 441-448 (2005)
- Kok, S., Singla, P., Richardson, M., Domingos, P.: The alchemy system for sta- tistical relational ai (Technical Report). Department of Computer Science and Engineering, University of Washington, Seattle, WA (2005), http://alchemy.cs.washington.edu/
- Laferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. 18th Int'l Conf. on Machine Learning, pp. 282-289 (2001)
- Landwehr, N., Kersting, K., De Raedt, L.: nFOIL: Integrating Naive Bayes and FOIL. In: Proc. 20th Nat'l Conf. on Artificial Intelligence, pp. 795-800. AAAI Press, Menlo Park (2005)
- Landwehr, N., Kersting, K., De Raedt, L.: Integrating Naive Bayes and FOIL. Journal of Machine Learning Research, 481-507 (2007)
- Landwehr, N., Passerini, A., De Raedt, L., Frasconi, P.: kFOIL: Learning Simple Relational Kernels. In: Proc. 21st Nat'l Conf. on Artificial Intelligence. AAAI Press, Menlo Park (2006)
- Loureno, H.R., Martin, O., Stutzle, T.: Iterated local search. In: Handbook of Metaheuristics, pp. 321-353. Kluwer Academic Publishers, Dordrecht (2002)
- Lowd, D., Domingos, P.: Efficient weight learning for markov logic networks. In: Proc. of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 200-211 (2007)
- Ng, A.Y., Jordan, M.I.: On discriminative vs. generative: A comparison of logistic regression and naive Bayes. In: Advances in Neural Information Processing Sys- tems, vol. 14, pp. 841-848. MIT Press, Cambridge (2002)
- McCallum, A.: Efficiently inducing features of conditional random fields. In: Proc. 19th Conf. on Uncertainty in Artificial Intelligence, pp. 403-410 (2003)
- Mihalkova, L., Mooney, R.J.: Bottom-up learning of markov logic network struc- ture. In: Proc. 24th Int'l Conf. on Machine Learning, pp. 625-632 (2007)
- Pernkopf, F., Bilmes, J.: Discriminative versus generative parameter and structure learning of Bayesian network classifiers. In: Proc, 22nd Int'l Conf. on Machine Learning, pp. 657-664 (2005)
- Popescul, A., Ungar, L., Lawrence, S., Pennock, D.: Statistical Relational Learning for Document Mining. In: Proc. 3rd Int'l Conf. on Data Mining, pp. 275-282 (2003)
- Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and de- terministic dependencies. In: Proc. 21st Nat'l Conf. on Artificial Intelligence, pp. 458-463. AAAI Press, Menlo Park (2006)
- Poon, H., Domingos, P., Sumner, M.: A General Method for Reducing the Com- plexity of Relational Inference and its Application to MCMC. In: Proc. 23rd Nat'l Conf. on Artificial Intelligence. AAAI Press, Chicago (to appear, 2008)
- Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5, 239-266 (1990)
- Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107- 236 (2006)
- Singla, P., Domingos, P.: Discriminative training of markov logic networks. In: Proc. 20th Nat'l Conf. on Artificial Intelligence, pp. 868-873. AAAI Press, Menlo Park (2005)
- Singla, P., Domingos, P.: Entity resolution with markov logic. In: Proc. 6th Int'l Conf. on Data Mining, pp. 572-582. IEEE Computer Society Press, Los Alamitos (2006)
- Singla, P., Domingos, P.: Memory-efficient inference in relational domains. In: Proc. 21st Nat'l Conf. on Artificial Intelligence, pp. 488-493. AAAI Press, Menlo Park (2006)
- Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: Proc. HLT-NAACL, pp. 134-141 (2003) References
- Awaad, I.S., Leon, B.E.: Xpersim: Simulation of the robotic experimenter. Tech- nical report, University of Applied Sciences Bonn-Rhein-Sieg (2006)
- Boström, H.: Predicate invention and learning from positive examples only. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 226-237.
- Springer, Heidelberg (1998)
- Bratko, I.: Prolog Programming for Artificial Intelligence. Addison-Wesley, Read- ing (2001)
- Cocora, A., Kersting, K., Plagemann, C., Burgard, W., De Raedt, L.: Learning relational navigation policies. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2006)
- Deshpande, A., Milch, B., Zettlemoyer, L.S., Kaelbling, L.P.: Learning probabilis- tic relational dynamics for multiple tasks. In: Proceedings of the Twenty Third Conference on Uncertainty in Artificial Intelligence (UAI) (2007)
- Dzeroski, S., De Raedt, L., Blockeel, H.: Relational reinforcement learning. In: Page, D.L. (ed.) ILP 1998. LNCS, vol. 1446, pp. 11-22. Springer, Heidelberg (1998)
- Kaiser, M., Klingspor, V., Morik, K., Rieger, A., Acame, M., del, J., Millan, R.: Learning techniques for mobile systems (1995)
- Kersting, K., Van Otterlo, M., De Raedt, L.: Bellman goes relational. In: Proceed- ings of the Twenty-First International Conference on Machine Learning (ICML 2004), Banff, Alberta, Canada (2004)
- Klingspor, V., Morik, K., Rieger, A.D.: Learning concepts from sensor data of a mobile robot. Machine Learning 23(2-3), 305-332 (1996)
- Kramer, S.: Predicate invention: A comprehensive view. Technical Report OFAI- TR-95-32 (1995)
- Langley, P., Simon, H., Bradshaw, G., Zytkow, J.: Scientific discovery: Computa- tional explorations of the creative processes (1987)
- Muggleton, S.: A strategy for constructing new predicates in first order logic. In: Sleeman, D. (ed.) Proceedings of the 3rd European Working Session on Learning, pp. 123-130. Pitman (1988)
- Muggleton, S.: Predicate invention and utility. Journal of Experimental and The- oretical Artificial Intelligence 6(1), 121-130 (1994)
- Rieger, A.: Data preparation for inductive learning in robotics (1995)
- Rieger, A.: Learning to guide a robot via perceptrons. In: Ghallab, M., Milani, A. (eds.) New Directions in AI Planning, pp. 383-394. IOS Press, Amsterdam (1996)
- Scott, P.D., Markovitch, S.: Learning novel domains through curiosity and conjec- ture. In: IJCAI, pp. 669-674 (1989)
- Shen, W.-M.: Discovery as autonomous learning from the environment. Machine Learning 12, 143-165 (1993)
- Stahl, I., Weber, I.: The arguments of newly invented predicates in ILP. In: Wrobel, S. (ed.) Proceedings of the 4th International Workshop on Inductive Logic Pro- gramming. Gesellschaft für Mathematik und Datenverarbeitung MBH, vol. 237, pp. 233-246 (1994)
- Stolcke, A., Omohundro, S.M.: Best-first model merging for hidden Markov model induction. Technical Report TR-94-003, 1947 Center Street, Berkeley, CA (1994)
- Zettlemoyer, L.S., Pasula, H.M., Kaelbling, L.P.: Learning planning rules in noisy stochastic worlds. In: Proc. 20th National Conference on Artificial Intelligence (2005) References Baião et al., 2003. Baião, F., Mattoso, M., Shavlik, J., Zaverucha, G.: Applying theory revision to the design of distributed databases. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 57-74. Springer, Heidelberg (2003)
- Bratko, 1999. Bratko, I.: Refining complete hypotheses in ILP. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 44-55. Springer, Heidelberg (1999) Esposito et al., 2000. Esposito, F., Semeraro, G., Fanizzi, N., Ferilli, S.: Multistrategy theory revision: Induction and abduction in inthelex. Machine Learning Journal 38(1/2), 133-156 (2000)
- King et al., 1995. King, R.D., Sternberg, M.J.E., Srinivasan, A.: Relating chemi- cal activity to structure: An examination of ILP successes. New Generation Computing 13(3-4), 411-433 (1995)
- Kohavi, 1995. Kohavi, R.: A study of cross-validation and bootstrap for accuracy esti- mation and model selection. In: Proceedings of the International Joint Conference on Artificial Intelligence(IJCAI), pp. 1137-1145 (1995)
- Mooney, 1992. Mooney, R.J.: Batch versus incremental theory refinement. In: Proceedings of the 1992 AAAI Spring Symposium on Knowledge Assimilation, Standford (1992)
- Muggleton, 1992. Muggleton, S.: Inductive logic programming. Academic Press, New York (1992)
- Muggleton, 1995. Muggleton, S.: Inverse entailment and Progol. New Generation Com- puting 13, 245-286 (1995)
- Nadeau and Bengio, 2003. Nadeau, C., Bengio, Y.: Inference for the generalization er- ror. Machine Learning 52(3), 239-281 (2003)
- Ong et al., 2005. Ong, I.M., Dutra, I.C., Page, D., Costa, V.C.: Mode directed path finding. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 673-681. Springer, Heidelberg (2005) Paes et al., 2008. Paes, A., Zaverucha, G., Costa, V.S.: Revising first-order logic the- ories from examples through stochastic local search. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 200-210.
- Springer, Heidelberg (2008)
- Quinlan, 1990. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5, 239-266 (1990)
- Richards and Mooney, 1995. Richards, B.L., Mooney, R.J.: Automated refinement of first-order Horn-clause domain theories. Machine Learning 19(2), 95-131 (1995)
- Srinivasan, 2001. Srinivasan, A.: The Aleph Manual (2001) Tang et al., 2003. Tang, L.R., Mooney, R.L., Melville, P.: Scaling up ilp to large exam- ples: Results on link discovery for counter-terrorism. In: Proceedings of the KDD- 2003 Workshop om Multi-Relational Data Mining, Washington, DC, pp. 107-121
- Wrobel, 1996. Wrobel, S.: First-order theory refinement. In: Raedt, L.D. (ed.) Ad- vances in Inductive Logic Programming, pp. 14-33. IOS Press, Amsterdam (1996) References
- Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)
- Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Veloso, M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 230-235 (2007)
- Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific Ameri- can 284(5), 34-43 (2001)
- Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artificial Intelligence 82(1-2), 353-367 (1996)
- Brandt, S., Küsters, R., Turhan, A.-Y.: Approximation and difference in descrip- tion logics. In: Fensel, D., Giunchiglia, F., McGuinness, D., Williams, M.-A. (eds.) Proceedings of the International Conference on Knowledge Representation, pp. 203-214. Morgan Kaufmann, San Francisco (2002)
- Cohen, W.W., Hirsh, H.: Learnability of description logics. In: Proceedings of the Fourth Annual Workshop on Computational Learning Theory, Pittsburgh, PA. ACM Press, New York (1992)
- Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic. In: Torasso, P., Doyle, J., Sandewall, E. (eds.) Proceedings of the 4th International Conference on the Principles of Knowledge Representation and Reasoning, pp. 121-133. Morgan Kaufmann, San Francisco (1994)
- d'Amato, C., Fanizzi, N., Esposito, F.: Query answering and ontology popula- tion: An inductive approach. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 288-302. Springer, Hei- delberg (2008)
- Dean, M., Schreiber, G.: Web Ontology Language Reference. W3C recommenda- tion, W3C (2004), http://www.w3.org/TR/owl-ref
- Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge- intensive induction of terminologies from metadata. In: McIlraith, S.A., Plex- ousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441-455.
- Springer, Heidelberg (2004)
- Goldman, S.A., Kwek, S., Scott, S.D.: Learning from examples with unspecified attribute values. Information and Computation 180(2), 82-100 (2003)
- Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com- bining logic programs with description logic. In: Proceedings of the 12th interna- tional conference on World Wide Web, WWW 2003, pp. 48-57. ACM Press, New York (2003)
- Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence 26(2), 139-159 (2007)
- Inuzuka, N., Kamo, M., Ishii, N., Seki, H., Itoh, H.: Tow-down induction of logic programs from incomplete samples. In: Muggleton, S. (ed.) ILP 1996. LNCS, vol. 1314, pp. 265-282. Springer, Heidelberg (1997)
- Kietz, J.-U.: Learnability of description logic programs. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 117-132. Springer, Heidelberg (2003)
- Kietz, J.-U., Morik, K.: A polynomial approach to the constructive induction of structural knowledge. Machine Learning 14(2), 193-218 (1994)
- Lehmann, J., Hitzler, P.: Foundations of refinement operators for description log- ics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 161-174. Springer, Heidelberg (2008)
- Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the ALC description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147-160. Springer, Heidelberg (2008)
- Lisi, F.A.: Principles of inductive reasoning on the Semantic Web: A framework for learning in AL-Log. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703, pp. 118-132. Springer, Heidelberg (2005)
- Quinlan, R.: Learning logical definitions from relations. Machine Learning 5, 239- 266 (1990)
- Rouveirol, C., Ventos, V.: Towards learning in CARIN-ALN . In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 191-208. Springer, Heidelberg (2000)
- Van Assche, A., Vens, C., Blockeel, H., Dzeroski, S.: First order random forests: Learning relational classifiers with complex aggregates. Machine Learning 64, 149-182 (2006)
- Blockeel, H., De Raedt, L.: Lookahead and discretization in ilp. In: Proc. of the 7th Int. Workshop on ILP, pp. 77-84 (1997)
- Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artificial Intelligence (101), 285-297 (1998)
- Castillo, L.P., Wrobel, S.: A comparative study on methods for reducing myopia of hill- climbing search in multirelational learning. In: Proc. of ICML 2004 (2004)
- Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Proc. of IJCAI 1999 (1999)
- Hulo, N., Sigrist, C.J.A., Le Saux, V., Langendijk-Genevaux, P.S., Bordoli, L., Gattiker, A., De Castro, E., Bucher, P., Bairoch, A.: Recent improvements to the prosite database. Nucleic Acids Research 32(Database-Issue), 134-137 (2004)
- Jaeger, M.: Type extension trees: a unified framework for relational feature construction. In: Proceedings of Mining and Learning with Graphs (MLG 2006) (2006)
- Jensen, D., Neville, J., Hay, M.: Avoiding bias when aggregating relational data with degree disparity. In: Proc. of ICML 2003 (2003)
- Knobbe, A.J., Siebes, A., van der Wallen, D.: Multi-relational decision tree induction. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 378-383. Springer, Heidelberg (1999)
- Neville, J., Jensen, D.: Collective classification with relational dependency networks. In: Proc. of 2nd Int. Workshop on Multi-Relational Data Mining, pp. 77-91 (2003)
- Neville, J., Jensen, D., Friedland, L., Hay, M.: Learning relational probability trees. In: Pro- ceedings of SIGKDDD 2003 (2003)
- Passerini, A., Punta, M., Ceroni, A., Rost, B., Frasconi, P.: Identifying cysteines and his- tidines in transition-metal-binding sites using support vector machines and neural networks. Proteins 65(2), 305-316 (2006)
- Perlich, C., Provost, F.: Aggregation-based featrue invention and relational concept classes. In: Proc. of SIGKDD 2003 (2003)
- Popescul, A., Ungar, L.H.: Feature generation and selection in multi-relational statistical learning. In: Getoor, L., Taskar, B. (eds.) Statistical Relational Learning. MIT Press, Cam- bridge (2007)
- Singla, P., Domingos, P.: Entity resolution with markov logic. In: Perner, P. (ed.) ICDM 2006. LNCS (LNAI), vol. 4065. Springer, Heidelberg (2006)
- Hanley, J.A., McNeil, B.J.: A method of comparing the areas under receiver operating char- acteristic curves derived from the same cases. Radiology 148(3), 839-843 (1983) References
- Lavrac, N., Dzeroski, S., Grobelnik, M.: Learning nonrecursive definitions of rela- tions with LINUS. Technical report, Jozef Stefan Institute (1990)
- Specia, L., Srinivasan, A., Ramakrishnan, G., Nunes, G.V.: Word Sense Dis- ambiguation Using Inductive Logic Programming. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 409-423.
- Springer, Heidelberg (2007)
- Zelezny, F.: Efficient Construction of Relational Features. In: Proceedings of the 4th Int. Conf. on Machine Learning and Applications, pp. 259-264. IEEE Computer Society Press, Los Angeles (2005)
- Landwehr, N., Passerini, A., Raedt, L.D., Frasconi, P.: kFOIL: Learning Simple Relational Kernels. In: Gil, Y., Mooney, R. (eds.) Proc. Twenty-First National Conference on Artificial Intelligence (AAAI 2006) (2006)
- Davis, J., Ong, I., Struyf, J., Burnside, E., Page, D., Costa, V.S.: Change of rep- resentation for statistical relational learning. In: Proc. IJCAI 2007 (2007)
- Srinivasan, A.: The Aleph Manual (1999), http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
- Mihalcea, R., Chklovski, T., Kilgariff, A.: The SENSEVAL-3 English Lexical Sam- ple Task. In: SENSEVAL-3: Third International Workshop on the Evaluation of Systems for Semantic Analysis of Text, Barcelona, pp. 25-28 (2004)
- Specia, L., Nunes, M.G.V., Stevenson, M.: Exploiting Parallel Texts to Produce a Multilingual Sense-tagged Corpus for Word Sense Disambiguation. In: RANLP 2005, Borovets, pp. 525-531 (2005)
- Lin, D.: Principle based parsing without overgeneration. In: 31st Annual Meeting of the Association for Computational Linguistics, Columbus, pp. 112-120 (1993)
- Ratnaparkhi, A.: A Maximum Entropy Part-Of-Speech Tagger. In: Empirical Methods in NLP Conference, University of Pennsylvania (1996)
- Procter, P.(ed.): Longman Dictionary of Contemporary English. Longman Group, Essex (1978)
- Parker, J., Stahel, Password, M.: English Dictionary for Speakers of Portuguese. Martins Fontes, São Paulo (1998)
- Brank, J., Grobelnik, M., Milic-Frayling, N., Mladenic, D.: Feature Selection Using Linear Support Vector Machines Technical report, Micorsoft Research, MSR-TR- 2002-63
- Muggleton, S., De Raedt, L.: Inductive Logic Programming: Theory and Methods. J. Log. Program 19/20, 629-679 (1994)
- Zelezny, F., Srinivasan, A., Page Jr., C.D.: Randomised restarted search in ILP. Machine Learning 64(1-3), 183-208 (2006)
- Dzeroski, S., Muggleton, S., Russell, S.J.: PAC-Learnability of Determinate Logic Programs. In: COLT 1992, pp. 128-135 (1992)
- King, R.D., Karwath, A., Clare, A., Dehaspe, L.: Genome scale prediction of pro- tein functional class from sequence using data mining. In: KDD 2000, pp. 384-389 (2000)
- Ramakrishnan, G., Joshi, S., Balakrishnan, S., Srinivasan, A.: Using ILP to Con- struct Features for Information Extraction from Semi-structured Text. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 211-224. Springer, Heidelberg (2008)
- Srinivasan, A., King, R.D.: Feature construction with Inductive Logic Program- ming: a study of quantitative predictions of biological activity aided by structural attributes. Data Mining and Knowledge Discovery 3(1), 37-57 (1999)
- Kohavi, R., John, G.H.: Wrappers for Feature Subset Selection. Artif. Intell. 97(1- 2), 273-324 (1997)
- Selman, B., Levesque, H.J., Mitchell, D.G.: A New Method for Solving Hard Sat- isfiability Problems. In: AAAI 1992, pp. 440-446 (1992)
- PERSON ∃ FATHER -.MALE
- MALE PERSON
- FEMALE PERSON
- FEMALE ¬MALE MALE(Bob) PERSON(Mary) PERSON(Paul) FATHER(John,Paul) and the following Datalog ¬∨ program Π (rules about students):
- boy(X)∨ girl(X) ← enrolled(X,c3,phd), PERSON(X)
- MALE(X) ← boy(X)
- man(X) ← enrolled(X,c3,phd), FATHER(X,Y) enrolled(Paul,c1,bsc) enrolled(Mary,c1,bsc) enrolled(Mary,c2,msc) enrolled(Bob,c3,phd) enrolled(John,c3,phd)
- Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cam- bridge University Press, Cambridge (2003)
- Borgida, A.: On the relative expressiveness of description logics and predicate log- ics. Artificial Intelligence 82(1-2), 353-367 (1996)
- Buntine, W.: Generalized subsumption and its application to induction and redun- dancy. Artificial Intelligence 36(2), 149-176 (1988)
- Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog (and never dared to ask). IEEE Transactions on Knowledge and Data Engineer- ing 1(1), 146-166 (1989)
- Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg (1990)
- De Raedt, L., Džeroski, S.: First order jk-clausal theories are PAC-learnable. Ar- tificial Intelligence 70, 375-392 (1994)
- Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating Datalog and Description Logics. Journal of Intelligent Information Systems 10(3), 227-252 (1998)
- Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database Systems 22(3), 364-418 (1997)
- Frisch, A.M., Cohn, A.G.: Thoughts and afterthoughts on the 1988 workshop on principles of hybrid reasoning. AI Magazine 11(5), 84-87 (1991)
- Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9(3/4), 365-386 (1991)
- Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the description logic SHIQ. Journal of Artificial Intelligence Research 31, 151-198 (2008)
- Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering. Springer, Heidelberg (2004)
- Gruber, T.: A translation approach to portable ontology specifications. Knowledge Acquisition 5, 199-220 (1993)
- Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1(1), 7-26 (2003)
- Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive descrip- tion logics. Logic Journal of the IGPL 8(3), 239-263 (2000)
- Kietz, J.-U.: Learnability of description logic programs. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 117-132. Springer, Heidelberg (2003)
- Levy, A.Y., Rousset, M.-C.: Combining Horn rules and description logics in CARIN. Artificial Intelligence 104, 165-209 (1998)
- Lisi, F.A.: Building Rules on Top of Ontologies for the Semantic Web with In- ductive Logic Programming. Theory and Practice of Logic Programming 8(03), 271-300 (2008)
- Lisi, F.A., Esposito, F.: Efficient Evaluation of Candidate Hypotheses in AL-log. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 216-233. Springer, Heidelberg (2004)
- Lisi, F.A., Malerba, D.: Bridging the Gap between Horn Clausal Logic and De- scription Logics in Inductive Learning. In: Cappelli, A., Turini, F. (eds.) AI*IA 2003. LNCS, vol. 2829, pp. 49-60. Springer, Heidelberg (2003)
- Lisi, F.A., Malerba, D.: Ideal Refinement of Descriptions in AL-log. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 215-232. Springer, Heidelberg (2003)
- Lisi, F.A., Malerba, D.: Inducing Multi-Level Association Rules from Multiple Relations. Machine Learning 55, 175-210 (2004)
- Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules. Journal on Web Semantics 3(1), 41-60 (2005)
- Reiter, R.: Equality and domain closure in first order databases. Journal of ACM 27, 235-249 (1980)
- Rosati, R.: Towards expressive KR systems integrating Datalog and description logics: preliminary report. In: Lambrix, P., Borgida, A., Lenzerini, M., Möller, R., Patel-Schneider, P.F. (eds.) Proceedings of the 1999 International Workshop on Description Logics (DL 1999). CEUR Workshop Proceedings (1999)
- Rosati, R.: On the decidability and complexity of integrating ontologies and rules. Journal of Web Semantics 3(1) (2005)
- Rosati, R.: Semantic and computational advantages of the safe integration of on- tologies and rules. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703, pp. 50-64. Springer, Heidelberg (2005)
- Rosati, R.: DL+log: Tight integration of description logics and disjunctive datalog. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proc. of Tenth International Conference on Principles of Knowledge Representation and Reasoning, pp. 68-78. AAAI Press, Menlo Park (2006)
- Rouveirol, C., Ventos, V.: Towards Learning in CARIN-ALN . In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 191-208. Springer, Heidelberg (2000)
- Schmidt-Schauss, M., Smolka, G.: Attributive concept descriptions with comple- ments. Artificial Intelligence 48(1), 1-26 (1991) References
- Bryant, C.H., Fredouille, D.: A parser for the efficient induction of biological grammars. In: Kramer, S., Pfahringer, B. (eds.) 15th International Conference on Inductive Logic Programming: late-breaking paper track, pp. 3-8. University of Bonn, Bonn (July 2005), http://wwwbib.informatik.tu-muenchen.de/infberichte/2005/TUM-I0510.idx
- Bryant, C.H., Fredouille, D., Wilson, A., Jayawickreme, C.K., Jupe, S., Topp, S.: Pertinent background knowledge for learning protein grammars. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 54-65. Springer, Heidelberg (2006)
- Fredouille, D., Bryant, C.H., Jayawickreme, C.K., Jupe, S., Topp, S.: An ILP re- finement operator for biological grammar learning. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 214-228.
- Springer, Heidelberg (2007)
- Muggleton, S., King, R.D., Sternberg, M.J.E.: Protein secondary structure pre- diction using logic-based machine learning. Protein Engineering Oxford 5(7), 647 (1992)
- Muggleton, S., Srinivasan, A., Bain, M.: Compression, significance and accuracy. In: Sleeman, D., Edwards, P. (eds.) Proceedings of the Ninth International Machine Learning Conference, pp. 338-347. Morgan Kaufmann, San Francisco (1992)
- Muggleton, S.H.: Inverse entailment and Progol. New Generation Computing 13, 245-286 (1995)
- Muggleton, S.H.: Learning from positive data. In: Muggleton, S.H. (ed.) ILP 1996. LNCS, vol. 1314, pp. 358-376. Springer, Heidelberg (1997)
- Muggleton, S.H., Bryant, C.H., Srinivasan, A., Whittaker, A., Topp, S., Rawlings, C.: Are grammatical representations useful for learning from biological sequence data? -a case study. Journal of Computational Biology 8(5), 493-522 (2001)
- Pereira, F., Warren, D.: Definite clause grammars for language analysis. Readings in natural language processing, pp. 101-124 (1986)
- Rissanen, J.J.: Modeling by shortest data description. Automatica 14, 465-471 (1978)
- Searls, D.B.: Linguistic approaches to biological sequences. Computer Applications in the Biosciences 13(4), 333-344 (1997)
- Srinivasan, A.: A learning engine for proposing hypotheses (Aleph) (1993), http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph
- Srinivasan, A., Muggleton, S., Bain, M.: The justification of logical theories based on data compression. Machine Intelligence 13, 91-125 (1994)
- Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech- niques, 2nd edn. Morgan Kaufmann, San Francisco (2005) References
- Boger, J., Poupart, P., Hoey, J., Boutilier, C., Fernie, G., Mihailidis, A.: A decision- theoretic approach to task assistance for persons with dementia. In: IJCAI (2005)
- Bui, H., Phung, D., Venkatesh, S.: Hierarchical hidden markov models with general state hierarchy. In: Proceedings of AAAI 2004 (2004)
- Bui, H., Venkatesh, S., West, G.: Policy recognition in the abstract hidden markov models. JAIR 17 (2002)
- Doucet, A., De Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo methods in practice (2001)
- Fine, S., Singer, Y., Tishby, N.: The hierarchical hidden markov model: Analysis and applications. Machine Learning 32, 41-62 (1998)
- Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)
- Kersting, K., De Raedt, L., Raiko, T.: Logical hidden markov models. JAIR 25, 425-456 (2006)
- Leo, M., D'Orazio, T., Spagnolo, P.: Human activity recognition for automatic visual surveillance of wide areas. In: VSSN 2004: Proceedings of the ACM 2nd international workshop on Video surveillance & sensor networks (2004)
- Milch, B., Russell, S.: General-purpose mcmc inference over relational structures. In: Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intel- ligence (UAI 2006) (2006)
- Murphy, K., Paskin, M.: Linear time inference in hierarchical HMMs. In: Proceed- ings of Neural Information Proceesing Systems (2001)
- Myers, K., Berry, P., Blythe, J., Conleyn, K., Gervasio, M., McGuinness, D., Mor- ley, D., Pfeffer, A., Pollack, M., Tambe, M.: An intelligent personal assistant for task and time management. AI Magazine (2007)
- Natarajan, S., Tadepalli, P., Fern, A.: A relational hierarchical model for decision- theoretic assistance. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 175-190. Springer, Heidelberg (2008)
- Zettlemoyer, L.S., Pasula, H.M., Kaelbling, L.P.: Logical particle filtering. In: Pro- ceedings of the Dagstuhl Seminar on Probabilistic, Logical, and Relational Learning (2007) References
- Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)
- Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 58-71. Springer, Heidelberg (2007)
- Brandt, S., Küsters, R., Turhan, A.-Y.: Approximation and difference in descrip- tion logics. In: Fensel, D., Giunchiglia, F., McGuinness, D., Williams, M.-A. (eds.) Proceedings of the 8th International Conference on Principles of Knowledge Rep- resentation and Reasoning, KR 2002, pp. 203-214. Morgan Kaufmann, San Fran- cisco (2002)
- Buitelaar, P., Cimiano, P., Magnini, B. (eds.): Ontology Learning from Text: Methods, Evaluation And Applications. IOS Press, Amsterdam (2005)
- Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic. In: Torasso, P., Doyle, J., Sandewall, E. (eds.) Proceedings of the 4th International Conference on the Principles of Knowledge Representation and Reasoning, pp. 121-133. Morgan Kaufmann, San Francisco (1994)
- Cumby, C.M., Roth, D.: On kernel methods for relational learning. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the 20th International Conference on Machine Learning, ICML 2003, pp. 107-114. AAAI Press, Menlo Park (2003)
- d'Amato, C., Fanizzi, N., Esposito, F.: Query answering and ontology popula- tion: An inductive approach. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 288-302. Springer, Hei- delberg (2008)
- Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge- intensive induction of terminologies from metadata. In: McIlraith, S.A., Plex- ousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441-455.
- Springer, Heidelberg (2004)
- Fanizzi, N., d'Amato, C.: A declarative kernel for ALC concept descriptions. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 322-331. Springer, Heidelberg (2006)
- Gärtner, T., Lloyd, J.W., Flach, P.A.: Kernels and distances for structured data. Machine Learning 57(3), 205-232 (2004)
- Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC- CRL-99-10, Department of Computer Science, University of California -Santa Cruz (1999)
- Horrocks, I.R., Li, L., Turi, D., Bechhofer, S.K.: The instance store: DL reasoning with large numbers of individuals. In: Haarslev, V., Möller, R. (eds.) Proceedings of the 2004 Description Logic Workshop, DL 2004. CEUR Workshop Proceedings, vol. 104, pp. 31-40. CEUR (2004)
- Kietz, J.-U., Morik, K.: A polynomial approach to the constructive induction of structural knowledge. Machine Learning 14(2), 193-218 (1994)
- Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the ALC description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894. Springer, Heidelberg (2008) References
- Codd, E.F.: The Relational Model for Database Management, Version 2. Addison-Wesley, Reading (1990)
- Date, C.J.: An Introduction to Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston (1991)
- Lloyd, J.W.: Logic and Learning. Springer, New York (2003)
- Gaertner, T., Lloyd, J.W., Flach, P.A.: Kernels and distances for structured data. Mach. Learn. 57(3), 205-232 (2004)
- Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic 5(2), 56-68 (1940)
- Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge Univer- sity Press, Cambridge (2004)
- Gyftodimos, E., Flach, P.A.: Combining bayesian networks with higher-order data represen- tations. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds.) IDA 2005. LNCS, vol. 3646, pp. 145-156. Springer, Heidelberg (2005)
- Culotta, A., McCallum, A.: Joint deduplication of multiple record types in relational data. In: CIKM 2005: Proceedings of the 14th ACM international conference on Information and knowledge management, pp. 257-258. ACM, New York (2005)
- Lawrence, S., Bollacker, K., Giles, C.L.: Autonomous citation matching. In: Proceedings of the 3rd International Conference on Autonomous Agents, pp. 392-393. ACM Press, New York (May 1999)
- Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404-409 (2001)
- Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (May 2001)
- Prud'hommeaux, E., Seabourne, A.: SPARQL Query Language for RDF. W3C, W3C Work- ing Draft April 19, 2005 edn. (April 2005)
- McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language overview (2004)
- Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Ben- jamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251-263. Springer, Heidel- berg (2002)
- Nienhuys-Cheng, S.H.: Distance between herbrand interpretations: A measure for approxi- mations to a target concept. In: [24], pp. 213-226
- Sebag, M.: Distance induction in first order logic. In: [24], pp. 264-272
- Bohnebeck, U., Horváth, T., Wrobel, S.: Term comparisons in first-order similarity measures. In: Page, D.L. (ed.) ILP 1998. LNCS, vol. 1446, pp. 65-79. Springer, Heidelberg (1998)
- Kirsten, M., Wrobel, S.: Extending k-means clustering to first-order representations. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 112-129. Springer, Heidelberg (2000)
- Bhattacharya, I., Getoor, L.: Relational clustering for multi-type entity resolution. In: MRDM 2005: Proceedings of the 4th international workshop on Multi-relational mining, pp. 3-12. ACM Press, New York (2005)
- Woznica, A., Kalousis, A., Kalousis, M.H.A., Hilario, M.: Kernels over relational algebra structures. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 588-598. Springer, Heidelberg (2005)
- Domingos, P., Domingos, P.: Multi-relational record linkage. In: Dzeroski, S., Blockeel, H. (eds.) Proceedings of the 2004 ACM SIGKDD Workshop on Multi-Relational Data Mining, pp. 31-48 (August 2004)
- Bhattacharya, I., Getoor, L.: A latent Dirichlet model for unsupervised entity resolution. In: 6th SIAM Conference on Data Mining (SDM 2006), Bethesda, MD (2006)
- d'Amato, C., Fanizzi, N., Esposito, F.: Induction of optimal semantic semi-distances for clausal knowledge bases. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 29-38. Springer, Heidelberg (2008)
- Lavrac, N., Dzeroski, S.(eds.): ILP 1997. LNCS, vol. 1297. Springer, Heidelberg (1997) P(a) P(b)
- Pr(P(a))
- Pr(Q(
- Pr(Q(a)) References
- Cussens, J.: Statistical aspects of stochastic logic programs. In: Jaakkola, T., Richardson, T. (eds.) Artificial Intelligence and Statistics 2001: Proceedings of the Eighth International Workshop, pp. 181-186. Morgan Kaufmann, San Francisco (2001)
- Domingos, P., Richardson, M.: Markov logic: A unifying framework for statisti- cal relational learning. In: Proc. of the ICML Workshop on Statistical Relational Learning and its connections to other Fields (2004)
- Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Dean, T. (ed.) Proceedings of the Sixteenth International Joint Confer- ences on Artificial Intelligence (IJCAI 1999), Stockholm, Sweden, pp. 1300-1309. Morgan Kaufmann, San Francisco (1999)
- Getoor, L.: An introduction to probabilistic graphical models for relational data. Data Engineering Bulletin 29(1) (March 2006)
- Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelli- gence 46, 311-350 (1996)
- Jaeger, M.: Relational Bayesian networks. In: Geiger, D., Shenoy, P.P. (eds.) Pro- ceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelli- gence (UAI 1997), pp. 266-273. Morgan Kaufmann, San Francisco (1997)
- Jaeger, M.: Relational bayesian networks: a survey. Linkšping Electronic Articles in Computer and Information Science 6 (2002)
- Kok, S., Domingos, P.: Learning the structure of markov logic networks. In: ICML 2005: Proceedings of the 22nd international conference on Machine learning, pp. 441-448. ACM Press, New York (2005)
- Kersting, K., de Raedt, L.: Bayesian logic programming: Theory and tool. MIT Press, Cambridge (2007)
- Kersting, K., De Raedt, L., Kramer, S.: Interpreting bayesian logic programs. In: Getoor, L., Jensen, D. (eds.) Proceedings of the AAAI-2000 Workshop on Learning Statistical Models from Relational Data, Technical Report WS-00-06. AAAI Press, Menlo Park (2000)
- Koller, D., Pfeffer, A.: Learning probabilities for noisy first-order rules. In: Proc. IJCAI 1997 (1997)
- Liu, D.C., Nocedal, J.: On the limited memory bfgs method for large scale opti- mization. Mathematical Programming 45, 503-528 (1989)
- Muggleton, S., de Raedt, L.: Inductive logic programming:theory and methods. J. of Logic Programming 19, 629-679 (1994)
- Muggleton, S.H.: Learning stochastic logic programs. In: Getoor, L., Jensen, D. (eds.) Proceedings of the AAAI 2000 workshop on Learning Statistical Models from Relational Data. AAAI, Menlo Park (2000)
- Ngo, L., Haddaway, P.: Answering queries from context-sensitive probabilistic knowledge base. Theoretical Computer Science 171, 147-177 (1997)
- Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107- 136 (2006)
- De Raedt, L., Lavrač, N.: The many faces of inductive logic programming. In: Ko- morowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 435-449. Springer, Heidelberg (1993)
- De Raedt, L., Lavrač, N.: Multiple predicate learning in two inductive logic pro- gramming setting. Journal of the IGPL 4(2), 227-254 (1996)
- De Raedt, L.: Logical settings for concept-learning. Artificial Intelligence 95, 187- 201 (1997)
- De Raedt, L., Dehaspe, L.: Learning from satisfiability. In: Proceedings of the 9th Dutch Conference on Artificial Intelligence, pp. 303-312 (1997)
- Doncescu, A., Yamamoto, Y., Inoue, K.: Biological systems analysis using induc- tive logic programming. In: Proceedings of the 21st International Conference on Advanced Information Networking and Applications, pp. 690-695. IEEE Computer Society, Los Alamitos (2007)
- Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: propositional case. Annals of Mathematics and Artificial Intelligence 15, 289-323 (1995)
- Eiter, T., Gottlob, G., Leone, N.: Abduction from logic programs: semantics and complexity. Theoretical Computer Science 189, 129-177 (1997)
- Flach, P.A., Kakas, A.C.: Abductive and inductive reasoning: background and issues. In: Flach, P.A., Kakas, A.C. (eds.) Abduction and Induction -Essays on their Relation and Integration. Kluwer Academic, Dordrecht (2000)
- Gelfond, M., Przymusinska, H., Przymusinski, T.: On the relationship between circumscription and negation as failure. Artificial Intelligence 38, 75-94 (1989)
- Inoue, K.: Linear resolution for consequence finding. Artificial Intelligence 56, 301- 353 (1992)
- Inoue, K., Sakama, C.: A fixpoint characterization of abductive logic programs. Journal of Logic Programming 27(2), 107-136 (1996)
- Inoue, K.: Automated abduction. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 311-341.
- Springer, Heidelberg (2002)
- Inoue, K.: Induction as consequence finding. Machine Learning 55, 109-135 (2004)
- Inoue, K., Saito, H.: Circumscription policies for induction. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 164-179. Springer, Heidelberg (2004)
- Lachiche, N.: Abduction and induction from a non-monotonic reasoning perspec- tive. In: Flach, P.A., Kakas, A.C. (eds.) Abduction and Induction -Essays on their Relation and Integration. Kluwer Academic, Dordrecht (2000)
- Lifschitz, V.: Answer set programming and plan generation. Artificial Intelli- gence 138, 39-54 (2002)
- Minker, J.: On indefinite data bases and the closed world assumption. In: Loveland, D.W. (ed.) CADE 1982. LNCS, vol. 138, pp. 292-308. Springer, Heidelberg (1982)
- McDermott, D.: Nonmonotonic logic II: nonmonotonic modal theories. Journal of the ACM 29, 33-57 (1982)
- Muggleton, S.: Inverse entailment and Progol. New Generation Computing 13, 245-286 (1995)
- Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS (LNAI), vol. 1228. Springer, Heidelberg (1997)
- Plotkin, G.D.: A note on inductive generalization. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 5, pp. 153-163. Edinburgh University Press (1970)
- Reiter, R.: On closed world databases. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 55-76. Plenum, New York (1978)
- Sakama, C.: Inverse entailment in nonmonotonic logic programs. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 209-224. Springer, Heidelberg (2000)
- Sakama, C.: Nonmonotonic inductive logic programming. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 62-80.
- Springer, Heidelberg (2001)
- Sakama, C.: Induction from answer sets in nonmonotonic logic programs. ACM Transactions on Computational Logic 6(2), 203-231 (2005) References
- Lavrač, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applica- tions. Ellis Horwood, New York (1994)
- De Raedt, L.: Inductive Theory Revision: An Inductive Logic Programming Ap- proach. Academic Press, London (1992)
- Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry (Expanded Edition). MIT Press, Cambridge (1972)
- Anderson, J.: A spreading activation theory of memory. Journal of Verbal Learning and Verbal Behavior 22, 261-295 (1983)
- Stracuzzi, D.J.: Scalable Knowledge Acquisition Through Cumulative Learning and Memory Organization. PhD thesis, Department of Computer Science, University of Massachusetts, Amherst, MA (2006)
- Utgoff, P.E.: Perceptron trees: A case study in hybrid concept representations. Connection Science 1(4), 377-391 (1989)
- Stracuzzi, D.J., Utgoff, P.E.: Randomized variable elimination. Journal of Machine Learning Research 5, 1331-1364 (2004)
- Quartz, S.R., Sejnowski, T.J.: The neural basis of development: A constructivist manifesto. Behavioral and Brain Sciences 20, 537-596 (1997)
- Quinlan, J.R., Cameron-Jones, R.M.: Foil: A midterm report. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 3-20. Springer, Heidelberg (1993)
- Kok, S., Singla, P., Richardson, M., Domingos, P.: The Alchemy system for statisti- cal relational AI. Technical report, University of Washington, Seattle, WA (2005), http://www.cs.washington.edu/ai/alchemy/
- Richardson, M., Domingos, P.: Markov logic networks. Journal of Machine Learning Research 62(1-2), 107-136 (2006)
- Pearl, J.: On the connection between the complexity and credibility of inferred models. Internation Journal of General Systems 4, 255-264 (1978)
- Jensen, D.D., Cohen, P.R.: Multiple comparisons in induction algorithms. Machine Learning 38(3), 309-338 (2000)
- Blockeel, H., De Raedt, L.: Inductive database design. In: Michalewicz, M., Raś, Z.W. (eds.) ISMIS 1996. LNCS (LNAI), vol. 1079, pp. 376-385. Springer, Heidel- berg (1996)
- De Raedt, L., Bruynooghe, M.: A theory of clausal discovery. In: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, Chambéry, France, pp. 1058-1063. Morgan Kaufmann, San Francisco (1993)
- Sammut, C., Banerji, R.B.: Learning concepts by asking questions. In: Machine Learning: An Artificial Intelligence Approach. Morgan Kaufmann, San Mateo (1986)
- Shapiro, E.: An algorithm that infers theories from facts. In: Drinan, A. (ed.) Proceedings of the Seventh International Joint Conference on Artificial Intelligence, pp. 446-451. Morgan Kaufmann, San Francisco (1981)
- Taylor, K.: Autonomous Learning by Incremental Induction and Revision. PhD thesis, Australian National University (1996)
- Basilio, R., Zaverucha, G., Barbosa, V.C.: Learning logic programs with neural networks. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 15-26. Springer, Heidelberg (2001)
- Carpenter, amd Grossberg, G.A., Rosen, S., David, B.: Fuzzy ART: Fast, stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks 4, 759-771 (1991)
- De Raedt, L., Kersting, K.: Probabilistic logic learning. SIGKDD Explo- rations 5(1), 31-48 (2003)
- Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in In- ductive Logic Programming, pp. 254-264. IOS Press, Amsterdam (1996)
- Kersting, K., De Raedt, L.: Bayesian logic programs. In: Cussens, J., Frisch, A. (eds.) Proceedings of the Work-in-Progress Track at the 10th International Con- ference on Inductive Logic Programming, pp. 138-155. Springer, Heidelberg (2000)
- Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learn- ing 44(3), 245-271 (2001)
- Muggleton, S.H.: Learning stochastic logic programs. In: Getoor, L., Jensen, D. (eds.) Proceedings of the AAAI 2000 Workshop on Learning Statistical Models from Relational Data. AAAI Press, Menlo Park (2000)
- Muggleton, S.H.: Learning structure and parameters of stochastic logic programs. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 198-206.
- Springer, Heidelberg (2003) References
- Badea, L., Stanciu, M.: Refinement operators can be (weakly) perfect. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 21-32. Springer, Heidelberg (1999)
- Chang, C., Lee, R.: Symbolic Logic and Mechanical Theorem Proving. Academic Press, London (1973)
- Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni- versity Press, Cambridge (2002)
- Kuwabara, M., Ogawa, T., Hirata, K., Harao, M.: On generalization and subsump- tion for ordered clauses. In: Proceedings of the JSAI 2005 Workshops, pp. 212-223 (2006)
- Laird, P.D.: Learning from good data and bad. PhD thesis, Yale University (1987)
- Lee, S.D., De Raedt, L.: Constraint Based Mining of First Order Sequences in SeqLog. Database Support for Data Mining Applications, 155-176 (2003)
- Muggleton, S.: Inverse entailment and Progol. New Generation Computing 13, 245-286 (1995)
- Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS (LNAI), vol. 1228. Springer, Heidelberg (1997)
- Plotkin, G.D.: Automatic Methods of Inductive Inference. PhD thesis, Edinburgh University (August 1971)
- Reynolds, J.C.: Transformational systems and the algebraic structure of atomic formulas. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 5, pp. 135-151. Edinburgh University Press, Edinburgh (1969)
- Srinivasan, A.: The Aleph Manual. University of Oxford, Oxford (2007)
- Tamaddoni-Nezhad, A., Muggleton, S.H.: Searching the subsumption lattice by a genetic algorithm. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 243-252. Springer, Heidelberg (2000)
- van der Laag, P.: An Analysis of Refinement Operators in Inductive Logic Pro- gramming. Tinbergen Institute Research Series, Rotterdam (1995) References
- Blockeel, H., Bruynooghe, M.: Aggregation versus selection bias, and relational neural networks. In: Getoor, L., Jensen, D. (eds.) IJCAI 2003 Workshop on Learn- ing Statistical Models from Relational Data, SRL 2003, Acapulco, Mexico (2003)
- Knobbe, A., Siebes, A., Marseille, B.: Involving aggregate functions in multi- relational search. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 287-298. Springer, Heidelberg (2002)
- Krogel, M.A., Wrobel, S.: Transformation-based learning using multirelational ag- gregation. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 142-155. Springer, Heidelberg (2001)
- Vens, C., Ramon, J., Blockeel, H.: Refining aggregate conditions in relational learn- ing. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 383-394. Springer, Heidelberg (2006)
- Vens, C., Van Assche, A., Blockeel, H., Dzeroski, S.: First order random forests with complex aggregates. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 323-340. Springer, Heidelberg (2004)
- Van Assche, A., Vens, C., Blockeel, H., Dzeroski, S.: First order random forests: Learning relational classifiers with complex aggregates. Machine Learning 64(1-3), 149-182 (2006)
- Uwents, W., Blockeel, H.: Classifying relational data with neural networks. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 384-396.
- Springer, Heidelberg (2005)
- Uwents, W., Monfardini, G., Blokeel, H., Scarsello, F., Gori, M.: Two connectionists models for graph processing: An experimental comparison on relational data. In: MLG 2006, Proceedings on the International Workshop on Mining and Learning with Graphs, pp. 211-220 (2006)
- Ramon, J., De Raedt, L.: Multi instance neural networks. In: Raedt, L.D., Kramer, S. (eds.) Proceedings of the ICML-2000 workshop on attribute-value and relational learning, pp. 53-60 (2000)
- Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems. Denver 1989, vol. 2, pp. 524-532. Morgan Kaufmann, San Mateo (1990)
- Werbos, P.J.: Back propagation through time: What it does and how to do it. Proceedings of the IEEE 78, 1550-1560 (1990)
- Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: Proc. of the IEEE Intl. Conf. on Neural Networks, San Francisco, CA, pp. 586-591 (1993)
- Michie, D., Muggleton, S., Page, D., Srinivasan, A.: To the international comput- ing community: A new east-west challenge. Technical report, Oxford University Computing Laboratory, Oxford, UK (1994)
- Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence 89(1-2), 31-71 (1997)
- Wang, C., Scott, S.D., Zhang, J., Tao, Q., Fomenko, D.E., Gladyshev, V.N.: A study in modeling low-conservation protein superfamilies. Technical Report UNL- CSE-2004-0003, University of Nebraska (2004)
- Berka, P.: Guide to the financial data set. In: Siebes, A., Berka, P. (eds.) The ECML/PKDD 2000 Discovery Challenge (2000)
- Vens, C.: Complex aggregates in relational learning. PhD thesis, Department of Computer Science, KULeuven (2007)
- For all v ∈ V (q), λ q (v) = λ p3 (ζ(v)).
- If (v, v ) ∈ H(q) (v = v ) then (ζ(v), ζ(
- If {v, v } ∈ E(q) then either {ζ(v), ζ(
- ∈ E(p 3 ) with δ p3 ({ζ(v), ζ(v )}) = δ q ({v, v }), or (ζ(v), ζ(v )) ∈ H(p 3 ).
- If {v, v } ∈ E(q) and (ζ(v), ζ(
- ∈ H(p 3 ), a bpo-graph pattern obtained from p 3 by substituting an edge of label δ q ({v, v }) for (ζ(v), ζ(v )) also explains S. There- fore, since Δ S -Labeled Edge Replacement can not apply to p 3 any more, if {v, v } ∈ E(q) then {ζ(v), ζ(v )} ∈ E(p 3 ) and δ p3 ({ζ(v), ζ(v )}) = δ q ({v, v })
- Aho, A.V., Hopcroft, J.D., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)
- Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21, 46-62 (1980)
- Horváth, T., Roman, J., Wrobel, S.: Frequent subgraph mining in outerplanar graphs. In: Proc. KDD 2006, pp. 197-206 (2006)
- National Cancer Institute. Chemical dataset, http://cactus.nci.nih.gov/
- Miyahara, T., Shoudai, T., Uchida, T., Kuboyama, T., Takahashi, K., Ueda, H.: Discovering new knowledge from graph data using inductive logic programming. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 222-233.
- Springer, Heidelberg (1999)
- Miyahara, T., Shoudai, T., Uchida, T., Takahashi, K., Ueda, H.: Polynomial time matching algorithms for tree-like structured patterns in knowledge discovery. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 5-16. Springer, Heidelberg (2000)
- Okada, R., Matsumoto, S., Uchida, T., Suzuki, Y., Shoudai, T.: Exact learning of finite unions of graph patterns from queries. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 298-312. Springer, Heidelberg (2007)
- Sasaki, Y., Yamasaki, H., Shoudai, T., Uchida, T.: Mining of frequent block pre- serving outerplanar graph structured patterns. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 239-253. Springer, Heidelberg (2008)
- Shinohara, T.: Polynomial time inference of extended regular pattern languages. In: Goto, E., Nakajima, R., Yonezawa, A., Nakata, I., Furukawa, K. (eds.) RIMS 1982. LNCS, vol. 147, pp. 115-127. Springer, Heidelberg (1983)
- Shoudai, T., Uchida, T., Miyahara, T.: Polynomial time algorithms for finding unordered tree patterns with internal variables. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 335-346. Springer, Heidelberg (2001)
- Suzuki, Y., Shoudai, T., Uchida, T., Miyahara, T.: Ordered term tree languages which are polynomial time inductively inferable from positive data. Theor. Com- put. Sci. 350, 63-90 (2006)
- Takami, R., Suzuki, Y., Uchida, T., Shoudai, T., Nakamura, Y.: Polynomial time inductive inference of TTSP graph languages from positive data. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 366-383. Springer, Heidelberg (2005)
- Uchida, T., Shoudai, T., Miyano, S.: Parallel algorithm for refutation tree problem on formal graph systems. IEICE Transactions on Information and Systems E78- D(2), 99-112 (1995)
- Yamasaki, H., Shoudai, T.: A polynomial time algorithm for finding linear interval graph patterns. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 67-78. Springer, Heidelberg (2007)