Learning in Multiobjective Optimization (Dagstuhl Seminar 12041)}}
https://doi.org/10.4230/DAGREP.2.1.50Abstract
Abstract This report documents the programme and outcomes of the Dagstuhl Seminar 12041" Learning in Multiobjective Optimization". The purpose of the seminar was to bring together researchers from the two main communities studying multiobjective optimization, Multiple Criteria Decision Making and Evolutionary Multiobjective Optimization, to take part in a wide-ranging discussion of what constitutes learning in multiobjective optimization, how it can be facilitated, and how it can be measured.
References (41)
- P.L. Yu. Cone convexity, cone extreme points, and nondominated solutions in decision prob- lems with multiobjectives. In Journal of Optimization Theory and Applications, 14(3):319- 377, 1974
- V.P. Berman and G.E. Naumov. Preference relation and interval value tradeoffs in criterion space. In Automation and Remote Control, 50(3):398-410, 1989.
- V. D. Noghin. Relative importance of criteria: a quantitative approach. In Journal of Multicriteria Decision Analysis, 6:355-363, 1997.
- V.D. Noghin and I.V. Tolstykh. Using quantitative information on the relative importance of criteria for decision making. In Computational Mathematics and Mathematical Physics, 40(11):1529-1536, 2000.
- V.D. Noghin. A logical justification of the Edgeworth-Pareto principle. In Computational Mathematics and Mathematical Physics, 42(7):915-920, 2001.
- O.N. Klimova and V.D. Noghin. Using interdependent information on the relative import- ance of criteria in decision making. In Computational Mathematics and Mathematical Phys- ics, 46(12):2178-2190, 2006.
- J. Geisler, A. Trächtler, K. Witting, and M. Dellnitz. Multiobjective optimization of control trajectories for the guidance of a rail-bound vehicle. In 17th IFAC World Congress, Seoul, Korea, 2008. http://dx.doi.org/10.3182/20080706-5-KR-1001.00738
- V. Bertsch, S. French, J. Geldermann, R. P. Hämäläinen, N. Papamichail and O. Rentz. Multi-criteria Decision Support and Evaluation of Strategies for Environmental Remedi- ation Management. In OMEGA, 37(1):238-251, 2009.
- G. Carenini and J. D. Mooore. Generating and evaluating evaluative arguments. In Artificial Intelligence, 170:925-952, 2006.
- T. Dodson, N. Mattei, and J. Goldsmith. A Natural Language Argumentation Interface for Explanation Generation in Markov Decision Processes. Presented at ADT2011, DIMACS, Rutgers, New Jersey, 2011. http://adt2011.org/papers/paper_12.pdf
- J. E. Greer, S. Falk, K. J. Greer and M. J. Bentham. Explaining and justifying recom- mendations in an agriculture decision support system. In Computers and Electronics in Agriculture 11(2-3):195-214, 1994.
- R. Kass and T. Finin. The need for user models in generating expert system explanation. In International Journal of Expert Systems, 1(4):345-375, 1988.
- A. M. Kass and D. B. Leake. Case-Based Reasoning Applied to Constructing Explanations. In Proceedings of 1988 Workshop on Case-Based Reasoning, pp. 190-208, 1988.
- D. A. Klein. Decision-Analytic Intelligent Systems: Automated Explanation and Knowledge Acquisition. Lawrence Erlbaum Associates, 1994.
- C. Labreuche, N. Maudet and W. Ouerdane. Minimal and Complete Explanations for Critical Multi-attribute Decisions. In Algorithmic Decision Theory, pp. 121-134, 2011.
- K. N. Papamichail and S. French. Explaining and Justifying the Advice of a Decision Sup- port System: A Natural Language Generation Approach. Expert Systems with Applications, pp. 35-48, 2003. http://adt2011.org/papers/paper_39.pdf
- K. N. Papamichail and S. French. Design and evaluation of an intelligent DSS for nuclear emergencies. In Decision Support Systems, 41:84-111, 2005.
- J. S. Hammond, R. L. Keeney and H. Raiffa. Smart Choices: a Practical Guide to Making Better Decisions. Boston, Harvard Business School Press, 1998.
- J S Hammond, R L Keeney, and H Raiffa. Even swaps: a rational method for making trade-offs. In Harvard Business Review, 76(2):137-138, 1998.
- 2 What and how can we learn from Pareto fronts and sets? (Working Group "Pareto Sense")
- Susanne Bürklen, Kalyanmoy Deb, Michael Emmerich,Karlheinz Kuefer, Boris Naujoks, Amos H. C. Ng, Akira Oyama, Silvia Poles, Tamara Ulrich, Katrin Witting References
- P. Eskelinen, K. Miettinen, K. Klamroth, and J. Hakanen. Pareto navigator for interactive nonlinear multiobjective optimization. OR Spectrum, 23:211-227, 2010.
- P. Korhonen and J. Wallenius. A Pareto race. Naval Research Logistics, 35:615-623, 1988.
- K. Miettinen, P. Eskelinen, F. Ruiz, and M. Luque. NAUTILUS method: an interactive technique in multiobjective optimization based on the nadir point. European Journal of Operational Research, 206(2):426-434, 2010.
- G.E.P. Box. Evolutionary operation: A method for increasing industrial productivity. Ap- plied Statistics, 6(2):81-101, 1957.
- H.-P. Schwefel. Evolutionsstrategie und numerische Optimierung. PhD thesis, Technical University of Berlin, 1975.
- I. Rechenberg. Case studies in evolutionary experimentation and computation. Computer Methods in Applied Mechanics and Engineering, 2-4(186):125-140, 2000.
- J. Knowles. Closed-loop evolutionary multiobjective optimization. IEEE Computational Intelligence Magazine, 4(3):77-91, 2009.
- R. Allmendinger. Tuning Evolutionary Search for Closed-Loop Optimization. PhD thesis, University of Manchester, Manchester, UK, 2012.
- S.S. Farid. Process economics of industrial monoclonal antibody manufacture. Journal of Chromatography B, 848:8-18, 2007.
- B.G. Small, B.W. McColl, R. Allmendinger, J. Pahle, G. López-Castejón, N.J. Rothwell, J. Knowles, P. Mendes, D. Brough, and D.B. Kell. Efficient discovery of anti-inflammatory small molecule combinations using evolutionary computing. Nature Chemical Biology, 7:902-908, 2011.
- S. O'Hagan, W.B. Dunn, M. Brown, J. Knowles, and D.B. Kell. Closed-loop, multiobject- ive optimization of analytical instrumentation: Gas chromatography / time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations. Analytical Chemistry, 77(1):290-303, 2005.
- O.M. Shir. Niching in Derandomized Evolution Strategies and Its Applications in Quantum Control: A Journey from Organic Diversity to Conceptual Quantum Designs. PhD thesis, University of Leiden, 2008.
- I. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi. Evolutionary robotics: The Sussex approach. Robotics and Autonomous Systems, 20(2-4):205-224, 1996.
- A. Thompson. Hardware Evolution: Automatic design of electronic circuits in reconfigurable hardware by artificial evolution. PhD thesis, University of Sussex, 1996.
- M. Herdy. Evolutionary optimization based on subjective selection -evolving blends of coffee. In European Congress on Intelligent Techniques and Soft Computing, pp. 640-644, 1997.
- N. Jozefowiez, F. Semet, and E.-G. Talbi. Multi-objective vehicle routing problems. European Journal of Operational Research, 189(2):293-309, 2008. 92 12041 -Learning in Multiobjective Optimization
- M.J. Geiger and W. Wenger. On the interactive resolution of multi-objective vehicle rout- ing problems. In Evolutionary Multi-Criterion Optimization: 4th International Conference, EMO 2007, volume 4403 of Lecture Notes in Computer Science, pp. 687-699, 2007.
- M.J. Geiger, W. Wenger, and W. Habenicht. Interactive utility maximization in multi- objective vehicle routing problems: A "decision maker in the loop"-approach. In Proceed- ings of the 2007 IEEE Symposium on Computational Intelligence in Multicriteria Decision Making (MCDM 2007), pp. 178-184, 2007.
- 5 Representations (Working Group "Representation")
- Carlos A. Coello Coello, José Rui Figueira, Carlos M. Fonseca, António Gaspar-Cunha, Kaisa Miettinen, Sanaz Mostaghim, Dmitry Podkopaev, Pradyumn Kumar Shukla, El-ghazali Talbi, Margaret M. Wiecek