Anderson impurity model in a semiconductor
2008, Physical Review B
Abstract
We consider an Anderson impurity model in which the locally correlated orbital is coupled to a host with a gapped density of states. Single-particle dynamics are studied, within a perturbative framework that includes both explicit second-order perturbation theory and self-consistent perturbation theory to all orders in the interaction. Away from particle-hole symmetry the system is shown to be a generalized Fermi liquid (GFL) in the sense of being perturbatively connectable to the non-interacting limit; and the exact Friedel sum rule for the GFL phase is obtained. We show by contrast that the particle-hole symmetric point of the model is not perturbatively connected to the non-interacting limit, and as such is a non-Fermi liquid for all non-zero gaps. Our conclusions are in agreement with NRG studies of the problem.
References (21)
- P. W. Anderson, Phys. Rev. 124, 41 (1961).
- A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993).
- T. K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 (1988).
- L. I. Glazman and M. E. Raikh, Sov. Phys. JETP Lett. 47, 452 (1988).
- D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M. A. Kastner, Na- ture 391, 156 (1998).
- S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwen- hoven, Science 281, 540 (1998).
- L. P. Kouwenhoven et al., in Mesoscopic Electron Trans- port, edited by L. L. Sohn (Kluwer, Dordrecht, 1997).
- D. L. Cox and A. Zawadowski, Advances in Physics 47, 599 (1998).
- R. Bulla, T. Costi, and T. Pruschke, cond-mat/0701105 (2007).
- O. Sakai, Y. Shimitzu, H. Shiba, and K. Satori, J. Phys. Soc. Jpn. 62, 3181 (1993).
- A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Rev. Mod. Phys. 78, 373 (2006).
- J. Bauer, A. Oguri, and A. C. Hewson, J. Phys.: Condens. Matter 19, 486211 (2007).
- T. Saso, J. Phys. Soc. Jpn. 61, 3439 (1992).
- J. Ogura and T. Saso, J. Phys. Soc. Jpn. 62, 4364 (1993).
- C. C. Yu and M. Guerrero, Phys. Rev. B 54, 8556 (1996).
- K. Takegahara, Y. Shimitzu, and O. Sakai, J. Phys. Soc. Jpn. 61, 3443 (1992).
- K. Chen and C. Jayaprakash, Phys. Rev. B 57, 5225 (1998).
- J. M. Luttinger, Phys. Rev. 121, 942 (1961).
- M. R. Galpin and D. E. Logan, Eur. Phys. J. B 62, 129 (2008).
- M. T. Glossop and D. E. Logan, J. Phys.: Condens. Matter 14, 6737 (2002).
- A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1977).