Academia.eduAcademia.edu

Outline

Anderson impurity model in a semiconductor

2008, Physical Review B

Abstract

We consider an Anderson impurity model in which the locally correlated orbital is coupled to a host with a gapped density of states. Single-particle dynamics are studied, within a perturbative framework that includes both explicit second-order perturbation theory and self-consistent perturbation theory to all orders in the interaction. Away from particle-hole symmetry the system is shown to be a generalized Fermi liquid (GFL) in the sense of being perturbatively connectable to the non-interacting limit; and the exact Friedel sum rule for the GFL phase is obtained. We show by contrast that the particle-hole symmetric point of the model is not perturbatively connected to the non-interacting limit, and as such is a non-Fermi liquid for all non-zero gaps. Our conclusions are in agreement with NRG studies of the problem.

References (21)

  1. P. W. Anderson, Phys. Rev. 124, 41 (1961).
  2. A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993).
  3. T. K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 (1988).
  4. L. I. Glazman and M. E. Raikh, Sov. Phys. JETP Lett. 47, 452 (1988).
  5. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M. A. Kastner, Na- ture 391, 156 (1998).
  6. S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwen- hoven, Science 281, 540 (1998).
  7. L. P. Kouwenhoven et al., in Mesoscopic Electron Trans- port, edited by L. L. Sohn (Kluwer, Dordrecht, 1997).
  8. D. L. Cox and A. Zawadowski, Advances in Physics 47, 599 (1998).
  9. R. Bulla, T. Costi, and T. Pruschke, cond-mat/0701105 (2007).
  10. O. Sakai, Y. Shimitzu, H. Shiba, and K. Satori, J. Phys. Soc. Jpn. 62, 3181 (1993).
  11. A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Rev. Mod. Phys. 78, 373 (2006).
  12. J. Bauer, A. Oguri, and A. C. Hewson, J. Phys.: Condens. Matter 19, 486211 (2007).
  13. T. Saso, J. Phys. Soc. Jpn. 61, 3439 (1992).
  14. J. Ogura and T. Saso, J. Phys. Soc. Jpn. 62, 4364 (1993).
  15. C. C. Yu and M. Guerrero, Phys. Rev. B 54, 8556 (1996).
  16. K. Takegahara, Y. Shimitzu, and O. Sakai, J. Phys. Soc. Jpn. 61, 3443 (1992).
  17. K. Chen and C. Jayaprakash, Phys. Rev. B 57, 5225 (1998).
  18. J. M. Luttinger, Phys. Rev. 121, 942 (1961).
  19. M. R. Galpin and D. E. Logan, Eur. Phys. J. B 62, 129 (2008).
  20. M. T. Glossop and D. E. Logan, J. Phys.: Condens. Matter 14, 6737 (2002).
  21. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1977).