Academia.eduAcademia.edu

Outline

Locality in Generic Instance Search from One Example

2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition

https://doi.org/10.1109/CVPR.2014.269

Abstract

This paper aims for generic instance search from a single example. Where the state-of-the-art relies on global image representation for the search, we proceed by including locality at all steps of the method. As the first novelty, we consider many boxes per database image as candidate targets to search locally in the picture using an efficient pointindexed representation. The same representation allows, as the second novelty, the application of very large vocabularies in the powerful Fisher vector and VLAD to search locally in the feature space. As the third novelty we propose an exponential similarity function to further emphasize locality in the feature space. Locality is advantageous in instance search as it will rest on the matching unique details. We demonstrate a substantial increase in generic instance search performance from one example on three standard datasets with buildings, logos, and scenes from 0.443 to 0.620 in mAP.

References (35)

  1. B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image windows. TPAMI, 34(11):2189-2202, 2012.
  2. R. Arandjelovic and A. Zisserman. Multiple queries for large scale specific object retrieval. In BMVC, 2012.
  3. R. Arandjelović and A. Zisserman. Three things everyone should know to improve object retrieval. In CVPR, 2012.
  4. R. Arandjelović and A. Zisserman. All about VLAD. In CVPR, 2013.
  5. Q. Chen, Z. Song, R. Feris, A. Datta, L. Cao, Z. Huang, and S. Yan. Efficient maximum appearance search for large-scale object detec- tion. In CVPR, 2013.
  6. O. Chum, A. Mikulík, M. Perdoch, and J. Matas. Total recall II: query expansion revisited. In CVPR, 2011.
  7. O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman. Total recall: Automatic query expansion with a generative feature model for object retrieval. In CVPR, 2007.
  8. J. Delhumeau, P.-H. Gosselin, H. Jégou, and P. Pérez. Revisiting the VLAD image representation. In MM, 2013.
  9. I. Endres and D. Hoiem. Category independent object proposals. In ECCV, 2010.
  10. H. Harzallah, F. Jurie, and C. Schmid. Combining efficient object localization and image classification. In ICCV, 2009.
  11. H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak geometric consistency for large scale image search. In ECCV, 2008.
  12. H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. TPAMI, 33(1):117-128, 2011.
  13. H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid. Aggregating local image descriptors into compact codes. TPAMI, 34(9):1704-1716, 2012.
  14. Y. Jiang, J. Meng, and J. Yuan. Randomized visual phrases for object search. In CVPR, 2012.
  15. A. Joly and O. Buisson. Logo retrieval with a contrario visual query expansion. In MM, 2009.
  16. C. H. Lampert. Detecting objects in large image collections and videos by efficient subimage retrieval. In ICCV, 2009.
  17. Z. Lin and J. Brandt. A local bag-of-features model for large-scale object retrieval. In ECCV, 2010.
  18. K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors. IJCV, 60(1):63-86, 2004.
  19. A. Mikulík, M. Perdoch, O. Chum, and J. Matas. Learning a fine vocabulary. In ECCV, 2010.
  20. D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. In CVPR, 2006.
  21. P. Over, G. Awad, J. Fiscus, G. Sanders, and B. Shaw. Trecvid 2012 - an introduction of the goals, tasks, data, evaluation mechanisms and metrics. In TRECVID, 2012.
  22. M. Perdoch, O. Chum, and J. Matas. Efficient representation of local geometry for large scale object retrieval. In CVPR, 2009.
  23. F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007.
  24. F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier. Large-scale image retrieval with compressed fisher vectors. In CVPR, 2010.
  25. F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010.
  26. J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In CVPR, 2007.
  27. J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization: Improving particular object retrieval in large scale image databases. In CVPR, 2008.
  28. D. Qin, S. Gammeter, L. Bossard, T. Quack, and L. Van Gool. Hello neighbor: accurate object retrieval with k-reciprocal nearest neigh- bors. In CVPR, 2011.
  29. D. Qin, C. Wengert, and L. van Gool. Query adaptive similarity for large scale object retrieval. In CVPR, 2013.
  30. J. Revaud, M. Douze, and C. Schmid. Correlation-based burstiness for logo retrieval. In MM, 2012.
  31. J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classifi- cation with the fisher vector: theory and practice. IJCV, 105(3):222- 245, 2013.
  32. G. Tolias, Y. Avrithis, and H. Jégou. To aggregate or not to aggregate: Selective match kernels for image search. In ICCV, 2013.
  33. G. Tolias, Y. Kalantidis, and Y. Avrithis. Symcity: feature selection by symmetry for large scale image retrieval. In MM, 2012.
  34. J. R. R. Uijlings, A. W. M. Smeulders, and R. J. H. Scha. The visual extent of an object: suppose we know the object locations. IJCV, 96(1):46-63, 2012.
  35. J. R. R. Uijlings, K. van de Sande, T. Gevers, and A. W. M. Smeul- ders. Selective search for object recognition. IJCV, 104(2):154-171, 2013.