Academia.eduAcademia.edu

Outline

The Potts Models and a Generalisation of the Clifford Algebras

1989, Bull Lond Math Soc

Abstract
sparkles

AI

This paper explores the mathematical framework underlying Potts models through the lens of representation theory of specific algebras. It introduces the algebras denoted as G_n(q) which act on Potts representations and establishes relationships between these algebras and the well-known Temperley-Lieb algebras, particularly at various values of q. The findings extend the understanding of the action of the Virasoro algebra on Potts models at criticality, especially for q=3 and q=4, and reveal insights into the representations pertaining to knot theory.

References (8)

  1. R. J. BAXTER, Exactly solved models in statistical mechanics (Academic Press, New York, 1982).
  2. B. ECKMANN, ' Gruppentheoretische Beweis des Satzes von Hurwitz-Radon uber die Komposition quadratischer Formen', Comment. Math. Helv. 15 (1942) 358-366.
  3. V. F. R. JONES, 'Index for subfactors', Invent. Math. 72 (1983) 1-25.
  4. P. P. MARTIN, 'Temperley-Lieb algebra, group theory and the Potts model', J. Physics A 21 (1988) 577-591.
  5. P. P. MARTIN and G. LAUNER, 'Temperley-Lieb operator formalism for Z q symmetric models and solvable sub-manifolds', J. Physics A 21 (1988) L1OO3-L1OO8.
  6. A. O. MORRIS, 'On a generalised Clifford algebra', Quart. J. Math. Oxford 18 (1967) 7-12.
  7. A. O. MORRIS, 'On a generalised Clifford algebra', Quart. J. Math. Oxford 19 (1968) 289-299.
  8. H. TAKAI, 'On a duality for crossed products of C*-algebras', J. Fund. Anal. 19 (1975) 25-39.