High-Level Context Inference for Human Behavior Identification
https://doi.org/10.1007/978-3-319-26410-3_16Abstract
This work presents the Mining Minds Context Ontology, an ontology for the identification of human behavior. This ontology comprehensively models high-level context based on low-level information, including the user activities, locations, and emotions. The Mining Minds Context Ontology is the means to infer high-level context from the low-level information. High-level contexts can be inferred from unclassified contexts by reasoning on the Mining Minds Context Ontology. The Mining Minds Context Ontology is shown to be flexible enough to operate in real life scenarios in which emotion recognition systems may not always be available. Furthermore, it is demonstrated that the activity and the location might not be enough to detect some of the high-level contexts, and that the emotion enables a more accurate high-level context identification. This work paves the path for the future implementation of the high-level context recognition system in the Mining Minds project.
References (20)
- Misfit Shine (2015). http://misfit.com/products/shine. (Accessed 14 September 2015)
- Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc Ubiquitous Comput. 2(4), 263-277 (2007)
- Banos, O., Bang, J.H., Hur, T.H., Siddiqui, M., Huynh-The, T., Vui, L.-B., Ali-Khan, W., Ali, T., Villalonga, C., Lee, S.: Mining human behavior for health promotion. In: Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2015) (2015)
- Banos, O., Amin, M.B., Khan, W.A., Afzel, M., Ahmad, M., Ali, M., Ali, T., Ali, R., Bilal, M., Han, M., Hussain, J., Hussain, M., Hussain, S., Hur, T.H., Bang, J.H., Huynh-The, T., Idris, M., Kang, D.W., Park, S.B., Siddiqui, H., Vui, L.-B., Fahim, M., Khattak, A.M., Kang, B.H., Lee, S.: An innovative platform for person- centric health and wellness support. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015, Part II. LNCS, vol. 9044, pp. 131-140. Springer, Heidelberg (2015)
- Banos, O., Bilal-Amin, M., Ali-Khan, W., Afzel, M., Ali, T., Kang, B.-H., Lee, S.: The mining minds platform: a novel person-centered digital health and well- ness framework. In: Proceedings of the 9th International Conference on Computing Technologies for Healthcare (2015)
- Banos, O., Damas, M., Pomares, H., Prieto, A., Rojas, I.: Daily living activity recognition based on statistical feature quality group selection. Expert Syst. Appl. 39(9), 8013-8021 (2012)
- Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing environments. Knowl. Eng. Rev. 18(03), 197-207 (2003)
- Chen, H., Finin, T., Joshi, A.: The soupa ontology for pervasive computing. In: Tamma, V., Cranefield, S., Finin, T.W., Willmott, S. (eds.) Ontologies for Agents: Theory and Experiences, pp. 233-258. Birkhäuser, Basel (2005)
- Datcu, D., Rothkrantz, L.: Semantic audio-visual data fusion for automatic emo- tion recognition. Emotion Recognition: A Pattern Analysis Approach, pp. 411-435 (2014)
- Hervás, R., Bravo, J., Fontecha, J.: A context model based on ontological lan- guages: a proposal for information visualization. J. UCS 16(12), 1539-1555 (2010)
- Liao, L., Fox, D., Kautz, H.: Extracting places and activities from GPS traces using hierarchical conditional random fields. Int. J. Robot. Res. 26(1), 119-134 (2007)
- Lin, Q., Zhang, D., Huang, X., Ni, H., Zhou, X.: Detecting wandering behavior based on GPS traces for elders with dementia. In: 12th International Conference on Control Automation Robotics & Vision, pp. 672-677. IEEE (2012)
- Mannini, A., Intille, S.S., Rosenberger, M., Sabatini, A.M., Haskell, W.: Activity recognition using a single accelerometer placed at the wrist or ankle. Med. Sci. Sports Exerc. 45(11), 2193-2203 (2013)
- Poveda Villalon, M., Suárez-Figueroa, M.C., García-Castro, R., Gómez-Pérez, A.: A context ontology for mobile environments. In: Proceedings of Workshop on Con- text, Information and Ontologies, CEUR-WS (2010)
- Preuveneers, D., et al.: Towards an extensible context ontology for ambient intelli- gence. In: Markopoulos, P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS, vol. 3295, pp. 148-159. Springer, Heidelberg (2004)
- Ribeiro, P., Santos-Victor, J.: Human activity recognition from video: modeling, feature selection and classification architecture. In: Proceedings of International Workshop on Human Activity Recognition and Modelling, pp. 61-78. Citeseer (2005)
- Riboni, D., Bettini, C.: COSAR: hybrid reasoning for context-aware activity recog- nition. Pers. Ubiquit. Comput. 15(3), 271-289 (2011)
- Mohsin Saleemi, M., Díaz Rodríguez, N., Lilius, J., Porres, I.: A framework for context-aware applications for smart spaces. In: Balandin, S., Koucheryavy, Y., Hu, H. (eds.) NEW2AN 2011 and ruSMART 2011. LNCS, vol. 6869, pp. 14-25.
- Springer, Heidelberg (2011)
- Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context modeling and reasoning using owl. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, pp. 18-22. IEEE (2004)