Active markers for outdoor and indoor robot localization
2005, Proceedings of TAROS
Abstract
Localization is one of the fundamental prob-lems in mobile robot navigation. In this paper a study is presented on a new methodology aimed at localizing a mobile robot in indoor and outdoor environments using active markers and commer-cial off-the-shelf webcams. The marker detection system is based on the dif-ference of working frequencies of the shutter of a webcam and of
Key takeaways
AI
AI
- The proposed system utilizes active markers and webcams for low-cost robot localization in various environments.
- DCDT (Device Communities Development Toolkit) integrates localization tasks with existing resources in a distributed system.
- The recognition algorithm mimics sound wave interference to identify active markers based on frequency differences.
- The Philips ToUCam Pro II webcam operates at 640x480 resolution, crucial for capturing marker signals effectively.
- Future work includes enhancing localization precision and potentially integrating multiple cameras for improved performance.
References (13)
- Arras and Tomatis, 1999] Arras, K. O. and Tomatis, N. (1999). Im- proving robustness and precision in mobile robot localization by using laser range finding and monocular vision. 3rd European Workshop on Advanced Mobile Robots.
- Batalin and Sukhatme, 2003] Batalin, M. A. and Sukhatme, G. S. (2003). Coverage, exploration and deployment by a mobile robot and communication network. In Proceedings of the International Workshop on Information Processing in Sensor Networks. [Betke and Gurvits, 1997] Betke, M. and Gurvits, L. (1997). Mobile robot localization using landmarks. In IEEE International Conference on Robotics and Automation, volume 2, pages 251-263.
- Borenstein et al., 1996] Borenstein, J., Everett, H. R., and Feng, L. (1996). Where am I? Systems and Methods for Mobile Robot Positioning. A. K. Peters, Ltd., Wellesley, MA. [Cassinis et al., 2001] Cassinis, R., Meriggi, P., Bonarini, A., and Ma- teucci, M. (2001). Device communities development toolkit: an introduction. In Eurobot'01, pages 155-161, Lund, Sweden. [Cassinis et al., 2003] Cassinis, R., Meriggi, P., and Panteghini, M. (2003). A very low cost distribuited localization and navigation system for mobile robot. In 1st European Conference on Mobile Robots (ECMR'03).
- Cassinis et al., 2005a] Cassinis, R., Tampalini, F., and Bartolini, P. (2005a). Wireless Network Issues fora a Roaming Robot. Techni- cal report, Università degli Studi di Brescia. http://www.ing. unibs.it/~cassinis/docs/papers/05_010.pdf. [Cassinis et al., 2005b] Cassinis, R., Tampalini, F., Bartolini, P., and Fedrigotti, R. (2005b). Docking and Charging System for Au- tonomous Mobile Robots. Technical report, Università degli Studi di Brescia. http://www.ing.unibs.it/~cassinis/docs/ papers/05_008.pdf.
- Davison, 2003] Davison, A. J. (2003). Real-time simultaneous localiza- tion and mapping with a single camera. IEEE International Conference on Computer Vision.
- Fiala, 2004] Fiala, M. (2004). Pseudo-random linear image marker (plim) self-identifying marker system. National Research Coucil Canada. [Georgiev and Allen, 2004] Georgiev, A. and Allen, P. K. (2004). Lo- calization methods for a mobile robot in urban environment. IEEE Trans. on Robotics and Automation, 20(5):851-864.
- Gutmann et al., ] Gutmann, J.-S., Fukuchi, M., and Sabe, K. En- vironment identification by comparing maps of landmarks. IEEE International Conference on Robotics and Automation (ICRA), pages 262-267.
- Jang et al., 2002] Jang, G., Kim, S., Lee, W., and Kweon, I. (2002). Color landmark based self-localization for indoor mobile robots. [Jensfelt, 2001] Jensfelt, P. (2001). Approaches to mobile robot localiza- tion in indoor environments. [Lamon et al., 2001] Lamon, P., Nourbakhsh, I., Jensen, B., and Sieg- wart, R. (2001). Deriving and matching image fingerprint sequences for mobile robot localization.
- Ma et al., 2002] Ma, L., Berkemeier, M., Chen, Y., vidson, M., Bahl, V., and Moore, K. L. (2002). Wireless visual servoing for odis an under car inspsction mobile robot. In Proceedings of IFAC World Congress, barcelona, Spain.
- Maeda et al., 2003] Maeda, M., Habara, T., Machida, T., Ogawa, T., Kiyokawa, K., and Takemura, H. (2003). Indoor localization methods for wearable mixed reality. In Proceedings of the 2nd CREST Workshop on Advanced Computing and Communication Tehniques for Wearable Information Playing. [Panzieri et al., 2001] Panzieri, S., Pasucci, F., Setola, R., and Ulivi, G. (2001). A low cost vision based localization system for mobile robots. In 9th Mediterranean Conf. on Control and Automation, Dubronvnik, Croatia. [Parker et al., 2004] Parker, L., Kannan, B., Tang, F., and Bailey, M. (2004). Tightly-coupled navigation assistance in heterogeneous multi- robot teams. In to appear in Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS).
- Roh et al., 1997] Roh, K. S., Lee, W. H., and Kweon, I. S. (1997). Obstacle detection and self-localization without camera calibration using projective invariants. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS). [Tampalini and Cassinis, 2005] Tampalini, F. and Cassinis, R. (2005). Fuzzy logic controller based on XML formatted files for behaviour- based mobile robots. Technical report, Università degli Studi di Brescia. http://www.ing.unibs.it/~cassinis/docs/ papers/05_011.pdf.
- Thrun, 1998] Thrun, S. (1998). Finding landmarks for mobile robot nav- igation. In IEEE International Conference on Robotics and Automation (ICRA), pages 958-963.
- Wolf and Pinz, 2003] Wolf, J. and Pinz, A. (2003). Particle filter for self localization using panoramic vision. In Proc. of 26th Workshop of the Austrian Association for Pattern Recognition, pages 157-164, Laxenburg, Austria.