Academia.eduAcademia.edu

Outline

Active markers for outdoor and indoor robot localization

2005, Proceedings of TAROS

Abstract

Localization is one of the fundamental prob-lems in mobile robot navigation. In this paper a study is presented on a new methodology aimed at localizing a mobile robot in indoor and outdoor environments using active markers and commer-cial off-the-shelf webcams. The marker detection system is based on the dif-ference of working frequencies of the shutter of a webcam and of

Key takeaways
sparkles

AI

  1. The proposed system utilizes active markers and webcams for low-cost robot localization in various environments.
  2. DCDT (Device Communities Development Toolkit) integrates localization tasks with existing resources in a distributed system.
  3. The recognition algorithm mimics sound wave interference to identify active markers based on frequency differences.
  4. The Philips ToUCam Pro II webcam operates at 640x480 resolution, crucial for capturing marker signals effectively.
  5. Future work includes enhancing localization precision and potentially integrating multiple cameras for improved performance.

References (13)

  1. Arras and Tomatis, 1999] Arras, K. O. and Tomatis, N. (1999). Im- proving robustness and precision in mobile robot localization by using laser range finding and monocular vision. 3rd European Workshop on Advanced Mobile Robots.
  2. Batalin and Sukhatme, 2003] Batalin, M. A. and Sukhatme, G. S. (2003). Coverage, exploration and deployment by a mobile robot and communication network. In Proceedings of the International Workshop on Information Processing in Sensor Networks. [Betke and Gurvits, 1997] Betke, M. and Gurvits, L. (1997). Mobile robot localization using landmarks. In IEEE International Conference on Robotics and Automation, volume 2, pages 251-263.
  3. Borenstein et al., 1996] Borenstein, J., Everett, H. R., and Feng, L. (1996). Where am I? Systems and Methods for Mobile Robot Positioning. A. K. Peters, Ltd., Wellesley, MA. [Cassinis et al., 2001] Cassinis, R., Meriggi, P., Bonarini, A., and Ma- teucci, M. (2001). Device communities development toolkit: an introduction. In Eurobot'01, pages 155-161, Lund, Sweden. [Cassinis et al., 2003] Cassinis, R., Meriggi, P., and Panteghini, M. (2003). A very low cost distribuited localization and navigation system for mobile robot. In 1st European Conference on Mobile Robots (ECMR'03).
  4. Cassinis et al., 2005a] Cassinis, R., Tampalini, F., and Bartolini, P. (2005a). Wireless Network Issues fora a Roaming Robot. Techni- cal report, Università degli Studi di Brescia. http://www.ing. unibs.it/~cassinis/docs/papers/05_010.pdf. [Cassinis et al., 2005b] Cassinis, R., Tampalini, F., Bartolini, P., and Fedrigotti, R. (2005b). Docking and Charging System for Au- tonomous Mobile Robots. Technical report, Università degli Studi di Brescia. http://www.ing.unibs.it/~cassinis/docs/ papers/05_008.pdf.
  5. Davison, 2003] Davison, A. J. (2003). Real-time simultaneous localiza- tion and mapping with a single camera. IEEE International Conference on Computer Vision.
  6. Fiala, 2004] Fiala, M. (2004). Pseudo-random linear image marker (plim) self-identifying marker system. National Research Coucil Canada. [Georgiev and Allen, 2004] Georgiev, A. and Allen, P. K. (2004). Lo- calization methods for a mobile robot in urban environment. IEEE Trans. on Robotics and Automation, 20(5):851-864.
  7. Gutmann et al., ] Gutmann, J.-S., Fukuchi, M., and Sabe, K. En- vironment identification by comparing maps of landmarks. IEEE International Conference on Robotics and Automation (ICRA), pages 262-267.
  8. Jang et al., 2002] Jang, G., Kim, S., Lee, W., and Kweon, I. (2002). Color landmark based self-localization for indoor mobile robots. [Jensfelt, 2001] Jensfelt, P. (2001). Approaches to mobile robot localiza- tion in indoor environments. [Lamon et al., 2001] Lamon, P., Nourbakhsh, I., Jensen, B., and Sieg- wart, R. (2001). Deriving and matching image fingerprint sequences for mobile robot localization.
  9. Ma et al., 2002] Ma, L., Berkemeier, M., Chen, Y., vidson, M., Bahl, V., and Moore, K. L. (2002). Wireless visual servoing for odis an under car inspsction mobile robot. In Proceedings of IFAC World Congress, barcelona, Spain.
  10. Maeda et al., 2003] Maeda, M., Habara, T., Machida, T., Ogawa, T., Kiyokawa, K., and Takemura, H. (2003). Indoor localization methods for wearable mixed reality. In Proceedings of the 2nd CREST Workshop on Advanced Computing and Communication Tehniques for Wearable Information Playing. [Panzieri et al., 2001] Panzieri, S., Pasucci, F., Setola, R., and Ulivi, G. (2001). A low cost vision based localization system for mobile robots. In 9th Mediterranean Conf. on Control and Automation, Dubronvnik, Croatia. [Parker et al., 2004] Parker, L., Kannan, B., Tang, F., and Bailey, M. (2004). Tightly-coupled navigation assistance in heterogeneous multi- robot teams. In to appear in Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS).
  11. Roh et al., 1997] Roh, K. S., Lee, W. H., and Kweon, I. S. (1997). Obstacle detection and self-localization without camera calibration using projective invariants. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS). [Tampalini and Cassinis, 2005] Tampalini, F. and Cassinis, R. (2005). Fuzzy logic controller based on XML formatted files for behaviour- based mobile robots. Technical report, Università degli Studi di Brescia. http://www.ing.unibs.it/~cassinis/docs/ papers/05_011.pdf.
  12. Thrun, 1998] Thrun, S. (1998). Finding landmarks for mobile robot nav- igation. In IEEE International Conference on Robotics and Automation (ICRA), pages 958-963.
  13. Wolf and Pinz, 2003] Wolf, J. and Pinz, A. (2003). Particle filter for self localization using panoramic vision. In Proc. of 26th Workshop of the Austrian Association for Pattern Recognition, pages 157-164, Laxenburg, Austria.