Academia.eduAcademia.edu

Outline

Reachability computation for hybrid systems with ariadne

2008

Abstract

Abstract: Ariadne is an in-progress open environment to design algorithms for computing with hybrid automata, that relies on a rigorous computable analysis theory to represent geometric objects, in order to achieve provable approximation bounds along the computations. In this paper we discuss the problem of reachability analysis of hybrid automata to decide safety properties. We describe in details the algorithm used in Ariadne to compute overapproximations of reachable sets.

References (27)

  1. R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho. Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems. In Hybrid Systems, LNCS, pages 209-229. Springer, 1992.
  2. E. Asarin, T. Dang, O. Maler, and O. Bournez. Approx- imate Reachability Analysis of Piecewise-Linear Dy- namical Systems. In Proceedings of Hybrid Systems: Computation and Control (HSCC'00), volume 1790 of LNCS, pages 20-31. Springer, 2000.
  3. E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of hybrid systems. In CAV '02: Proceedings of the 14th International Conference on Computer Aided Verification, pages 365-370. Springer-Verlag, 2002.
  4. A. Balluchi, A. Casagrande, P. Collins, A. Ferrari, T. Villa, and A. Sangiovanni-Vincentelli. Ariadne: a framework for reachability analysis of hybrid automata. In Proc. of the 17th Int. Symp. on Mathematical Theory of Networks and Systems (MTNS 2006), 2006.
  5. O. Botchkarev and S. Tripakis. Verification of hybrid sys- tems with linear differential inclusions using ellipsoidal approximations. In Proceedings of Hybrid Systems: Computation and Control (HSCC'00), volume 1790 of LNCS, pages 73-88. Springer, 2000.
  6. T. Brihaye, C. Michaux, C. Rivière, and C. Troestler. On O-Minimal Hybrid Systems. In Proceedings of Hybrid Systems: Computation and Control (HSCC'04), volume 2993 of LNCS, pages 219-233. Springer, 2004.
  7. E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg, and M. Theobald. Abstraction and counterexample-guided refinement in model checking of hybrid systems. Internat. J. Found. Comput. Sci., 14 (4):583-604, 2003.
  8. P. Collins. Continuity and computability of reachable sets. Theoretical Computer Science, 341:162-195, 2005.
  9. P. Collins. Optimal semicomputable approximations to reachable and invariant sets. Theory Comput. Syst., 41 (1):33-48, 2007.
  10. T. Dang and O. Maler. Reachability analysis via face lifting. In Proceedings of Hybrid Systems: Computation and Control (HSCC'98), volume 1386 of LNCS, pages 96-109, 1998.
  11. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In Proceedings of Hybrid Systems: Computation and Control (HSCC'95), volume 1066 of LNCS, pages 208-219. Springer, 1995.
  12. Michael Dellnitz, Gary Froyland, and Oliver Junge. The algorithms behind GAIO-set oriented numerical meth- ods for dynamical systems. In Ergodic theory, analysis, and efficient simulation of dynamical systems, pages 145-174, 805-807. Springer, 2001.
  13. G. Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech. In Hybrid Systems: Computation and Control, 8th International Workshop, HSCC 2005, volume 3414 of LNCS, pages 258-273. Springer, 2005.
  14. N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems by means of convex approxi- mations. In Static Analysis Symposium, pages 223-237. Springer-Verlag, 1994.
  15. T. A. Henzinger and P. W. Kopke. State Equivalences for Rectangular Hybrid Automata. In Proceedings of CONCUR'96, volume 1119 of LNCS, pages 530-545.
  16. T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What's decidable about hybrid automata? In Proc. of the 27th ACM Symp. on the Theory of Computing (STOCS '95), pages 373-382. ACM Press, 1995.
  17. T. A. Henzinger, P. H. Ho, and H. Wong-Toi. HYTECH: a model checker for hybrid systems. Int. J. on Software Tools for Technology Transfer, 1(1-2):110-122, 1997.
  18. A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysis. In Proceedings of Hybrid Systems: Computation and Control (HSCC'00), volume 1790 of LNCS, pages 202-214, 2000.
  19. G. Lafferriere, G. J. Pappas, and S. Sastry. O-Minimal Hybrid Systems. Mathematics of Control, Signals, and Systems, 13:1-21, 2000.
  20. K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Int. J. on Software Tools for Technology Transfer, 1(1-2):134-152, 1997.
  21. K. Makino and M. Berz. Cosy infinity version 9. Nuclear Instruments and Methods, A558:346-350, 2006.
  22. O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, editors, Real- Time: Theory in Practice, volume 600, pages 447-484. Springer-Verlag, 1991.
  23. S. Ratschan and Z. She. Safety verification of hybrid systems by constraint propagation based abstraction refinement. ACM Transactions in Embedded Computing Systems, 6(1), 2007.
  24. B. I. Silva, O. Stursberg, B. H. Krogh, and S. Engell. An assessment of the current status of algorithmic ap- proaches to the verification of hybrid systems. In Pro- ceedings of the Fortieth IEEE Conference on Decision and Control (CDC '01), pages 2867-2874, 2001.
  25. A. Tiwari. Abstractions for hybrid systems. Formal Methods in System Design, 32(1):57-83, 2008.
  26. C.J. Tomlin, I. Mitchell, A.M. Bayen, and M. Oishi. Computational techniques for the verification of hybrid systems. Proceedings of the IEEE, 91(7):986-1001, 2003.
  27. S. Yovine. Kronos: a verification tool for real-time systems. Int. J. on Software Tools for Technology Transfer, 1(1- 2):123-133, 1997.