Academia.eduAcademia.edu

Outline

Jacobi polynomials from compatibility conditions

2005

Abstract

Abstract: We revisit the ladder operators for orthogonal polynomials and re-interpret two supplementary conditions as compatibility conditions of two linear over-determined systems; one involves the variation of the polynomials with respect to the variable $ z $(spectral parameter) and the other a recurrence relation in $ n $(the lattice variable). For the Jacobi weight

References (14)

  1. N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, English translation, Oliver and Boyed, Edinburgh, 1965. MR 0184042 (32:1518)
  2. G. E. Andrews, R. A. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999. MR 1688958 (2000g:33001)
  3. W. Bauldry, Estimates of asymmetric Freud polynomials on the real line, J. Approximation Theory 63 (1990), 225-237. MR 1079852 (92c:33008)
  4. S. S. Bonan and D. S. Clark, Estimates of the Hermite and the Freud polynomials, J. Ap- proximation Theory 63 (1990), 210-224. MR 1079851 (92c:33007)
  5. S. Bonan, D. S. Lubinsky, and P. Nevai, Derivatives of Orthogonal Polynomials and charac- terization of weights, in "Approximation Theory 5," Academic Press, New York, 1986, pp. 271-274.
  6. S. Bonan, D. S. Lubinsky, and P. Nevai, Orthogonal polynomials and their derivatives. II. SIAM J. Math. Anal. 18 (1987), 1163-1176. MR 0892495 (89a:42032)
  7. Y. Chen and M. E. H. Ismail, Ladder operators and differential equations for orthogonal polynomials, J. Phys. A 30 (1997), 7817-7829. MR 1616931 (2000i:33011)
  8. M. E. H. Ismail, An extremal problem for generalized Jacobi polynomials, in "Proc. of the Mathematics Conference, Birzeit University," S. Elaydi et al., eds., World Scientific, 2000, pp. 139-145. MR 1773025 (2001h:33012)
  9. M. E. H. Ismail and J. Wimp, On differential equations for orthogonal polynomials, Methods and Applications of Analysis 5(4) (1998), 439-452. MR 1669843 (99i:42037)
  10. H. N. Mhaskar, Bounds for Certain Freud-Type Orthogonal Polynomials, J. Approx. Theory 63 (1990), 238-254. MR 1079853 (92c:33009)
  11. P. Nevai, Géza Freud, orthogonal polynomials and Christoffel functions: A case study, J. Approx. Theory 48 (1986), 3-167. MR 0862231 (88b:42032)
  12. E. D. Rainville, Special Functions, Chelsea, the Bronx, 1971. MR 0393590 (52:14399)
  13. J. Shohat and J. D. Tamarkin, The Problem of Moments, revised edition, American Mathe- matical Society, Providence, 1950. MR 0008438 (5:5c)
  14. G. Szegő, Orthogonal Polynomials, Fourth Edition, Amer. Math. Soc., Providence, 1975. MR 0372517 (51:8724)