Academia.eduAcademia.edu

Outline

Rough Sets and Rough Logic: A KDD Perspective

2000, Studies in Fuzziness and Soft Computing

https://doi.org/10.1007/978-3-7908-1840-6_13

Abstract

Basic ideas of rough set theory were proposed by Zdzis law Pawlak in the early 1980's. In the ensuing years, we have witnessed a systematic, world-wide growth of interest in rough sets and their applications.

References (138)

  1. Adams, E.W.: The Logic of Conditionals, An Application of Probability to De- ductive Logic. D. Reidel Publishing Company, Dordrecht, 1975.
  2. T. Agotnes, J. Komorowski, T. Loken : Taming large rule models in rough set approaches. Proceedings of the 3rd European Conference of Principles and Prac- tice of Knowledge Discovery in Databases, September 15-18, 1999, Prague, Czech Republic, Lecture Notes in Artificial Intelligence 1704, Springer-Verlag, Berlin, 1999, pp. 193-203.
  3. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings ACM SIGMOD Conference on Manage- ment of Data, Washington, 1993, pp. 207-213.
  4. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. Verkano(1996): Fast discovery of association rules. Fayyad U.M., Piatetsky-Shapiro G., Smyth P., Uthurusamy R. (Eds.): Advances in Knowledge Discovery and Data Mining, The AAAI Press/The MIT Press 1996, pp. 307-328.
  5. Anderson, A.R., Belnap. N.D.: Entailment: The Logic of Relevance and Necessity. Princeton University Press, Vol.1, 1975.
  6. Anderson, A.R., Belnap. N.D., Dunn, J.M: Entailment: Vol.2. Oxford University Press, 1992.
  7. Anthony, M., Biggs, N.: Computational Learning Theory. Cambridge University Press, Cambridge, 1992.
  8. Aquist, L.: Deontic logic.In: [31], pp. 605-714.
  9. Bazan, J.G., Nguyen,Son Hung, Nguyen, Tuan Trung, Skowron, A., Stepaniuk, J.: Decision rules synthesis for object classification. In: E. Orlowska (ed.), Incomplete Information: Rough Set Analysis, Physica -Verlag, Heidelberg, 1998, pp. 23-57.
  10. J. G. Bazan: A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision system. In: [94], 1998, pp. 321-365.
  11. van Bentham, J.: Temporal logic. In: [34],1995, pp. 241-350.
  12. van Bentham, J.: Logic after the Golden Age. IILC Magazine, December 1999, Institute for Logic, Language and Computation, Amsterdam University, p. 12.
  13. F. M. Brown: Boolean Reasoning. Kluwer Academic Publishers, Dordrecht, 1990.
  14. G. Cattaneo: Abstract approximation spaces for rough theories. In: Polkowski and Skowron [94], 1998, pp. 59-98.
  15. M. R. Chmielewski, J. W. Grzymala-Busse: Global discretization of attributes as preprocessing for machine learning. In: Proceedings of the Third International Workshop on Rough Sets and Soft Computing (RSSC'94),San Jose State Univer- sity, San Jose, California, USA, November 10-12, 1994, pp. 294-301.
  16. J. Cios, W. Pedrycz, and R.W. Swiniarski: Data Mining in Knowledge Discovery. Kluwer Academic Publishers, Dordrecht, 1998.
  17. E. F. Codd: A relational model for large shared data banks. Comm. ACM. Vol.13, No 6, 1970, pp. 377-382.
  18. A. Czyżewski: Soft processing of audio signals. In: Polkowski and Skowron [95], 1998, pp. 147-165.
  19. Davis, M.: Computability and Unsolvability. Mc Graw-Hill, New York, 1958.
  20. J. Deogun, V. Raghavan, A. Sarkar, and H. Sever: Data mining: Trends in research and development. In: Lin and Cercone [59], 1997, pp. 9-45.
  21. Dougherty J., Kohavi R., and Sahami M.: Supervised and unsupervised discretiza- tion of continuous features. In: Proceedings of the Twelfth International Confer- ence on Machine Learning, Morgan Kaufmann, San Francisco, CA, 1995..
  22. Dubois, D., Prade, H.: Belief Change. Vol. 3 in: Gabbay, D.M., Smets Ph. (eds.), Handbook of Defeasible Reasoning and Uncertainty Management Systems. Kluwer Academic Publishers, Dordrecht, 1998.
  23. I. Duentsch, G. Gediga: Statistical evaluation of rough set dependency analysis. International Journal of Human-Computer Studies 46, 1997, pp. 589-604.
  24. I. Duentsch, G. Gediga: Rough set data analysis. In: Encyclopedia of Computer Science and Technology, Marcel Dekker (to appear).
  25. M. J. Egenhofer, R. G. Golledge (eds.): Spatial and Temporal Reasoning in Geo- graphic Information Systems. Oxford University Press, Oxford, 1997.
  26. Eisinger, M., Ohlbach, H. J.: Deduction systems based on resolution. In: [32], pp. 183-271.
  27. Fagin, R., Halpern. J.Y., Moses, Y., and Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge MA, 1995.
  28. Fayyad, U., Piatetsky-Shapiro, G. (eds.): Advances in Knowledge Discovery and Data Mining. MIT and AAAI Press, Cambridge MA, 1996.
  29. Fitting, M.: Basic modal logic. In: [33], pp. 368-438.
  30. J. Friedman, R. Kohavi, and Y. Yun: Lazy Decision Trees. In: Proc. of AAAI-96, 1996, pp. 717-724.
  31. Gabbay, D., Guenthner, F. (eds.): Handbook of Philosophical Logic Vol.2. Kluwer Academic Publishers, Dordrecht, 1994.
  32. Gabbay, D.M., Hogger, C.J., and Robinson, J.A. (eds.): Handbook of Logic in Artificial Intelligence and Logic Programming Vol.1. Oxford University Press, New York, 1993.
  33. Gabbay, D.M., Hogger, C.J., and Robinson, J.A. (eds.): Handbook of Logic in Artificial Intelligence and Logic Programming vol.3. Oxford University Press, New York, 1993.
  34. Gabbay, D.M., Hogger, C.J., and Robinson, J.A. (eds.): Handbook of Logic in Artificial Intelligence and Logic Programming Vol.4. Oxford University Press, New York, 1995.
  35. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-completeness. W.H. Freeman and Company, New York, 1979.
  36. Gärdenfors, P., Rott, H.: Belief revision. In: [34], 1995, pp. 35-132.
  37. Geffner, H.: Default Reasoning: Causal and Conditional theories. MIT Press, Cam- bridge, MA, 1992.
  38. Gentzen, G.: Untersuchungen über das logische Schliessen, Math. Zeitschrift 39, 1934, pp. 176-210, 405-431.
  39. C. Glymour, D. Madigan, D. Pregibon, and P. Smyth: Statistical themes and lessons for data mining. Data Mining and Knowledge Discovery 1, 1996, pp. 25- 42.
  40. Gonzalez. A.J., Dankel, D.D.: The Engineering of Knowledge Based Systems: The- ory and Practice. Prentice Hall, Englewood Cliffs, NJ, 1993.
  41. Gödel, K.: die Vollständigkeit der Axiome des Logischen Funktionenkalküls, Monatshefte für Mathematik und Physik 37, 1930, pp. 349-360.
  42. Gödel, K.: Über formal unetscheidbare Sätze der Principia Mathematica und Ver- wandtersysteme I, Monatshefte für Mathematik und Physik 38, 1931, pp. 173-198.
  43. S. Greco, B. Matarazzo, and R. S lowinski: Rough Approximation of a Preference Relation in a Pairwise Comparison Table. In: Polkowski and Skowron [95], 1998, pp. 13-36.
  44. J.W. Grzyma la-Busse: Applications of the rule induction system LERS. In: Polkowski and Skowron [94], 1998, pp. 366-375.
  45. Halpern, J.Y.: Reasoning about knowledge: a survey. In: [34], 1995, pp. 1-34.
  46. Harel D.: Dynamic logic. In: [31], 1994, pp. 497-604.
  47. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca, N.Y., 1962.
  48. Hodges, W.: Logical features of Horn clauses. In: [32], 449-503.
  49. P. J. Huber: Robust statistics. Wiley, New York, 1981.
  50. Hughes, G.E., Creswell, M.J.: An Introduction to Modal Logic. Methuen, London, 1968.
  51. J. Komorowski, J. Żytkow (Eds.): The First European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD'97). June 25-27, Trondheim, Norway. Lecture Notes in Artificial Intelligence 1263, Springer-Verlag, Berlin, 1997, pp. 1-396.
  52. J. Komorowski, Z. Pawlak, L. Polkowski, and A. Skowron Rough sets: A tutorial. In: S.K. Pal and A. Skowron (eds.), Rough fuzzy hybridization: A new trend in decision-making. Springer-Verlag, Singapore, 1997, pp. 3-98.
  53. Konolige, K.: Autoepistemic logic. In: [33], 1994, 217-295.
  54. W. Kowalczyk: Rough data modelling, A new technique for analyzing data. In: Polkowski and Skowron [94], 1998, pp. 400-421.
  55. K. Krawiec, R. S lowiński, and D. Vanderpooten: Learning decision rules from similarity based rough approximations. In: Polkowski and Skowron [95], 1998, pp. 37-54.
  56. Kruse, R., Gebhardt, J., and Klawonn, F.: Foundations of Fuzzy Systems. J. Wiley, New York, 1994.
  57. M. Kryszkiewicz: Generation of rules from incomplete information systems. In: Komorowski and Żytkow [51], 1997, pp. 156-166.
  58. Lifschitz, V.: Circumscription. In: [33], 297-352.
  59. T. Y. Lin, N. Cercone (Eds.): Rough Sets and Data Mining. Analysis of Imprecise Data. Kluwer Academic Publishers, Boston, 1997.
  60. T.Y. Lin: Granular computing on binary relations I, II. In: Polkowski and Skowron [94], 1998, pp. 107-140.
  61. Leśniewski, S.: On the foundations of mathematics. In: Surma, S., Srzednicki,J.T., Barnett, D.I., Rickey, F.V. (eds), Stanislaw Leśniewski. Collected Works. Kluwer Academic Publishers, Dordrecht (1992), pp. 174-382.
  62. Lloyd, J. W.: Foundations of Logic Programming. Springer-Verlag, Berlin, 1984.
  63. Lukasiewicz, J.: Die logischen Grundlagen der Wahrscheinchkeitsrechnung. Kraków, 1913.
  64. Lukasiewicz, J.: Philosophische Bemerkungen zu mehrwertigen Systemen des Aus- sagenkalküls. Comptes rendus de la Société des Sciences et des Lettres de Varsovie 23, 1930, pp. 57-77.
  65. Makinson, D.: General patterns in non-monotonic reasoning. In: [33], 35-110.
  66. Mendelson, E.: Introduction to Mathematical Logic. Van Nostrand, New York, 1960.
  67. Michalski, R.: Inferential theory of learning as a conceptual basis for multistrategy. Machine Learning 11, 1993, pp. 111-151.
  68. Michalski R., Tecuci G.: Machine Learning. A Multistrategy Approach Vol.4. Mor- gan Kaufmann, San Francisco, 1994.
  69. D. Michie, D.J. Spiegelhalter, C.C. Taylor (Eds.): Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York, 1994.
  70. T.M. Mitchell: Machine Learning. Mc Graw-Hill, Portland, 1997.
  71. T. Mollestad and J. Komorowski: A Rough Set Framework for Propositional De- fault Rules Data Mining. In: S.K. Pal and A. Skowron (Eds.): Rough -Fuzzy Hybridization: New Trend in Decision Making. Springer-Verlag, Singapore, 1999.
  72. Muggleton, S.: Foundations of Inductive Logic Programming. Prentice Hall, En- glewood Cliffs, 1995.
  73. Nadler M., Smith E.P.: Pattern Recognition Engineering. Wiley, New York, 1993.
  74. H. S. Nguyen: Discretization of Real Value Attributes, Boolean Reasoning Ap- proach. Ph.D. Dissertation, Warsaw University, 1997, pp. 1-90.
  75. H. S. Nguyen: Efficient SQL-learning method for data mining in large data bases. In: Proceedings of the Sixteenth International Joint Conference on Artificial In- telligence (IJCAI'99), 1999, pp. 806-811.
  76. S. H. Nguyen: Data Regularity Analysis and Applications in Data Mining. Ph.D. Dissertation, Warsaw University, 1999.
  77. H.S. Nguyen, S.H. Nguyen: Pattern extraction from data. Fundamenta Informat- icae 34, 1998, pp. 129-144.
  78. H.S. Nguyen, S.H. Nguyen: Rough sets and association rule generation. Funda- menta Informaticae 40/4 (in print).
  79. S. H. Nguyen, A. Skowron, and P. Synak: Discovery of data patterns with appli- cations to decomposition and classification problems. In: Polkowski and Skowron [95], 1998, pp. 55-97.
  80. Nute, D.: Conditional logic. In: [31], 387-440.
  81. E. Or lowska (ed.): Incomplete Information: Rough Set Analysis. Physica-Verlag, Heidelberg, 1998.
  82. S. K. Pal, A. Skowron (1999), Rough-fuzzy Hybridization: A New Trend in Deci- sion Making. Springer-Verlag, Singapore, 1999.
  83. G. Paun, L. Polkowski, and A. Skowron: Parallel communicating grammar systems with negotiations. Fundamenta Informaticae 28/3-4, 1996, pp. 315-330.
  84. Z. Pawlak: Information systems -theoretical foundations. Information Systems 6, 1981, pp. 205-218.
  85. Z. Pawlak: Rough sets. International Journal of Computer and Information Sci- ences 11, 1982, pp. 341-356.
  86. Z. Pawlak: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht, 1992.
  87. Z. Pawlak, Z. Ras, (Eds.): Proceedings: Ninth International Symposium on Methodologies for Intelligent Systems (ISMIS'96),Springer-Verlag, Berlin, 1996.
  88. Z. Pawlak, A. Skowron: Rough set rudiments. Bulletin of the International Rough Set Society 3/4, 1999, pp. 181-185.
  89. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco, 1988.
  90. Z. Piasta, A. Lenarcik: Rule induction with probabilistic rough classifiers. Machine Learning (to appear).
  91. L. Polkowski: On synthesis of constructs for spatial reasoning via rough mereology. Fundamenta Informaticae (to appear).
  92. L. Polkowski, A. Skowron: Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15/4,1994, pp. 333- 365.
  93. L. Polkowski, A. Skowron: Rough sets: A perspective. In: Polkowski and Skowron [94], 1998, pp. 31-58.
  94. L. Polkowski, A. Skowron (Eds.): Rough Sets in Knowledge Discovery 1: Method- ology and Applications. Physica-Verlag, Heidelberg, 1998.
  95. L. Polkowski, A. Skowron (Eds.: Rough Sets in Knowledge Discovery 2: Applica- tions, Case Studies and Software Systems. Physica-Verlag, Heidelberg, 1998.
  96. L. Polkowski, A. Skowron (Eds.): Proc. First International Conference on Rough Sets and Soft Computing, RSCTC'98, Warszawa, Poland, LNAI 1424, Springer- Verlag, Berlin, 1998.
  97. L. Polkowski, A. Skowron: Towards adaptive calculus of granules. In: [135], 1, 1999, pp. 201-227.
  98. Poole, D.: Default logic. In: [33], 189-216.
  99. Prawitz, D.: Natural deduction, a proof theoretic study. Stockholm Studies in Philosophy Vol.3, Almquist & Wiksell, Stockholm, 1965.
  100. J.R. Quinlan: C4.5. Programs for machine learning. Morgan Kaufmann, San Ma- teo, CA, 1993.
  101. Z.W. Ras: Cooperative knowledge-based systems. Journal of the Intelligent Au- tomation Soft Computing 2/2 (special issue edited by T.Y. Lin), 1996, pp. 193- 202.
  102. Rescher, N.: Many-valued Logics. Mc Graw Hill, New York, 1969.
  103. J. J. Rissanen: Modeling by Shortest Data Description. Automatica 14, 1978, pp. 465-471.
  104. Roddick J.F., Spiliopoulou M.: A Bibliography of Temporal, Spatial, and Tem- poral Data Mining Research. Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining 1/1, 1999, pp. 34-38.
  105. Rosser, J.B., Turquette, A.R.: Many-valued Logics. North-Holland, Amsterdam, 1952.
  106. Russel, S.J., Norvig, P.: Artificial Intelligence. A Modern Approach. Prentice Hall, Englewood Cliffs, 1995.
  107. Sandewall, E., Shoham, Y.: Non-monotonic temporal reasoning. In: [34], 439-498.
  108. B. Selman, H. Kautz and D. McAllester. Ten challenges in propositional reasoning and search. Proc. IJCAI'97, Japan.
  109. Skowron A.: Synthesis of adaptive decision systems from experimental data. In: A. Aamodt, J. Komorowski (eds): Proc. of the Fifth Scandinavian Conference on Artificial Intelligence (SCAI'95), May 1995, Trondheim, Norway. IOS Press, Amsterdam, 1995, pp. 220-238.
  110. A. Skowron, H.S. Nguyen: Boolean reasoning scheme with some applications in data mining. Proceedings of the 3-rd European Conference on Principles and Prac- tice of Knowledge Discovery in Databases, September 1999, Prague, Czech Repub- lic. Lecture Notes in Computer Science 1704, 1999, pp. 107-115.
  111. A. Skowron, C. Rauszer: The Discernibility Matrices and Functions in Information Systems. In: S lowiński [115], 1992, pp. 331-362.
  112. A. Skowron, J. Stepaniuk: Tolerance Approximation Spaces. Fundamenta Infor- maticae 27, 1996, pp. 245-253.
  113. A. Skowron, J. Stepaniuk, and S. Tsumoto: Information Granules for Spatial Reasoning. Bulletin of the International Rough Set Society 3/4, 1999, pp. 147- 154.
  114. D. Ślȩzak: Approximate reducts in decision tables. In: Proceedings of the Sixth International Conference, Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU'96) vol. 3, July 1-5, Granada, Spain, 1996, pp. 1159-1164.
  115. R. S lowiński, (Ed.): Intelligent Decision Support -Handbook of Applications and Advances of the Rough Sets Theory. Dordrecht, Kluwer Academic Publishers, 1992.
  116. R. S lowiński, D. Vanderpooten: Similarity relation as a basis for rough approxi- mations. In: P. Wang (Ed.): Advances in Machine Intelligence & Soft Computing. Bookwrights, Raleigh NC, 1997, pp. 17-33.
  117. R. S lowiński, D. Vanderpooten: A generalized definition of rough approximations based on similarity. IEEE Trans. on Data and Knowledge Engineering (to appear).
  118. Stalnaker, R.: A theory of conditionals. In: N. Rescher (ed.): Studies in Logical Theory. Blackwell, Oxford, 1968.
  119. M. Szczuka: Symbolic and neural network methods for classifiers construction. Ph.D. Dissertation, Warsaw University, 1999.
  120. Tarski, A.: On the concept of logical consequence. In: Logic, Semantics, Meta- mathematics. Oxford University Press, Oxford, 1956.
  121. Tarski, A.: Der Wahrheitsbegriff in den Formalisierten Sprachen, Studia Philo- sophica 1, 1936, pp. 261-405.
  122. Troelstra, A. S.: Aspects of constructive mathematics. In: Barwise, J. (ed.): Hand- book of Mathematical Logic. North Holland, Amsterdam, 1977, pp. 973-1052.
  123. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London 1993.
  124. S. Tsumoto: Modelling diagnostic rules based on rough sets. In: Polkowski and Skowron [96], 1998, pp. 475-482.
  125. J. D. Ullman, J. Widom: A First Course in Database Systems. Prentice-Hall, Inc., Englewood Cliffs, 1997.
  126. Urquhart, A.: Many-valued logic. In: [33], 71-116.
  127. A. Wasilewska, L. Vigneron: Rough algebras and automated deduction. In: Polkowski and Skowron [94], 1998, pp. 261-275.
  128. Wille, R.: Formale Begriffsanalyse: Mathematische Grundlagen. Springer-Verlag, Berlin, 1996.
  129. Von Wright, G.H.: An Essay in Modal Logic. North Holland, Amsterdam, 1951.
  130. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 1965, pp. 333-353.
  131. Zadeh, L.A.: A theory of approximate reasoning. In: Hayes, J.E., Michie, D., Mikulich, L.C. (eds.): Machine Intelligence Vol.9. J. Wiley, New York, 1979, pp. 149-194.
  132. Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. on Fuzzy Systems 4, 1996, pp. 103-111.
  133. Zadeh, L.A: Toward a theory of fuzzy information granulation and its certainty in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 1997, pp. 111-127.
  134. Zadeh, L.A., Kacprzyk, J. (eds.): Computing with Words in Informa- tion/Intelligent Systems Vol. 1-2. Physica-Verlag, Heidelberg, 1999.
  135. M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li: New parallel algorithms for fast discovery of association rules. In: Data Mining and Knowledge Discovery : An International Journal (special issue on Scalable High-Performance Computing for KDD) 1/4, 1997, pp. 343-373.
  136. W. Ziarko: Variable Precision Rough Set Model. J. of Computer and System Sciences 46, 1993, pp. 39-59.
  137. W. Ziarko (ed.): Rough Sets, Fuzzy Sets and Knowledge Discovery (RSKD'93). Workshops in Computing, Springer-Verlag & British Computer Society, London, Berlin, 1994.
  138. W. Ziarko: Rough sets as a methodology for data mining. In: Polkowski and Skowron [95], 1998, pp. 554-576.