Academia.eduAcademia.edu

Outline

Collaborative Filtering for Information Recommendation Systems

2009

Abstract

In order to draw users’ attention and to increase their satisfaction towards online information search results, search engine developers and vendors try to predict user preference based on the user behavior. Recommendations are provided by the search engines or online vendors to the users. Recommendation systems are implemented in commercial and non-profit web sites to predict the user preferences. For

FAQs

sparkles

AI

What explains the success of collaborative filtering in recommendation systems?add

The paper reveals that collaborative filtering techniques effectively predict user preferences by analyzing relations among existing data, as demonstrated in projects like Grouplens and MovieLens since the early 1990s.

How do item-based algorithms improve computational efficiency in recommendations?add

Item-based collaborative filtering reduces computational time by focusing on properties of items, with systems like Amazon's recommendation engine successfully implementing these techniques to enhance scalability in large datasets.

What are the limitations of conventional collaborative filtering algorithms?add

The study finds that conventional algorithms struggle with scalability and sparsity, particularly when new user behaviors or ratings emerge, which has been a consistent challenge since their inception.

How does the integration of hybrid methods enhance recommendation accuracy?add

Hybrid recommendation systems combine content-based and collaborative filtering techniques to cover extreme case scenarios inadequately handled by traditional approaches, thus improving overall user satisfaction.

What challenges arise from dynamic user data in recommendation systems?add

The paper highlights issues such as data latency and synchronization in real-time updates, with computational demands increasing significantly as user data evolves continuously.

References (36)

  1. Aggarwal, C. C., Gates, S. C., & Yu, P. S. (2004). On using partial supervision for text categorization. IEEE Transactions on Knowledge and Data Engineering, 16 (2), 245-255.
  2. Amzn Investor Relations. (2004). Amazon.com Apparel & Accessories Store Reaches One Millionth Customer Account. Amazon.com 2004 Press Releases. Retrieved 17 August 2004, from http://www.amazon.com.
  3. Armstrong, R., Freitag, D., Joachims, T., & Mitchell, T. (1995). Webwatcher: A learning apprentice for the world wide web. AAAI Spring Symposium on Information Gathering from Heterogeneous, Distributed Environments, 6-12.
  4. Balabanovic, M., & Shoham, Y. (1997). Fab: Content-based collaborative recommendation. Communications of the ACM , 40(3), 88-89.
  5. Breese, J., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithm for collaborative filtering. Microsoft Technical Report MSR-TR-98-12.
  6. Charalambous, C. D., & Logothetis, A. (2000). Maximum likelihood parameter estimation from incomplete data via the sensitivity equations: the continuous-time case. IEEE Transactions on Automatic Control (IEEE) 45, no. 5, 928-34.
  7. Chee, S. H. S., Han, J., & Wang, K. (2001). RecTree: An Effcient Collaborative Filtering Method. Lecture Notes in Computer Science, 2114, 141-151.
  8. Chen, A. Y., & McLeod D. (2004). Semantic-based customization of information retrieval on the World Wide Web. manuscript in preparation.
  9. Chien, Y. H., & George E. I. (1999). A Bayesian Model for Collaborative Filtering. Proceedings of the Seventh International Workshop on Artificial Intelligence and Statistics, San Francisco, CA.
  10. Dahlen, B. J., Konstan, J., Herlocker, J., Good, N., Borchers, A., & Riedl, J. T. (1998). Jump-starting movielens: User benefits of starting a collaborative filtering system with "dead data". University of Minnesota TR 98-017.
  11. Deshpande, M., & Karypis, G. (2004). Item-based top-N recommendation algorithms. ACM Transactions on Information Systems (TOIS), 22(1), 143-177.
  12. Foner, L. (1997). Yenta: A multi-agent, referral-based matchmaking system. Proceedings of The First International Conference on Autonomous Agents. ACM. xvi+549, 301-7.
  13. Ganesan, P., Garcia-Molina, H., & Widom, J. (2003). Exploiting hierarchical domain structure to compute similarity. ACM Transactions on Information Systems. ACM. 21, no. 1, 64-93.
  14. Goldberg, K., Roeder, T., Gupta, D., & Perkins, C. (2001). Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval 4(2), 133-151.
  15. Herlocker, J., Konstan, J., Borchers, A., & Riedl, J. T. (1999). An algorithmic framework for performing collaborative filtering. Proceedings of ACM SIGIR'99. ACM. xvi+339, 230-7.
  16. Hill, W., Stead, L., Rosenstein, M., & Furnas, G. (1995). Recommending and evaluating choices in a virtual community of use. Proceedings of CHI '95. ACM. xx+598, 194-201.
  17. Hofmann, T., & Puzicha, J. (1999). Latent class models for collaborative filtering. Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence. Morgan Kaufmann Publishers. xxii+1452, vol.2, 688-93.
  18. Huberman, B. A., & Kaminsky, M. (1996). Beehive: A system for cooperative filtering and sharing of information. Computer Human Interaction. 210-217.
  19. Lee, W. S. (2000). Online clustering for collaborative filtering. School of Computing Technical Report TRA8/00.
  20. Lemire D. (2003). Scale and Translation Invariant Collaborative Filtering Systems. Journal of Information Retrieval, 8(1), 129-150.
  21. Lin, C. H., & McLeod, D. (2002). Exploiting and learning human temperaments for customized information recommendation. Proceedings of the 6th IASTED International Conference on Internet and Multimedia Systems and Applications. ACTA. iv+430, 218-23.
  22. Jung, J. J., Yoon, J. S., & Jo, G. S. (2001). Collaborative information filtering by using categorized bookmarks on the web. Web Knowledge Management and Decision Support. 14th International Conference on Applications of Prolog. Revised papers (Lecture Notes in Artificial Intelligence Vol.2543). Berlin, Germany : Springer-Verlag. x+305, 237-50.
  23. Karypis, G. (2000). Evaluation of item-based top-N recommendation algorithms. Technical Report 00-046, University of Minnesota, Department of Computer Science.
  24. Ko, S. J., & Lee, J. H. (2001). Discovery of user preference through genetic algorithm and Bayesian categorization for recommendation. Conceptual Modeling for New Information Systems Technologies, ER 2001 Workshops, HUMACS, DASWIS, ECOMO, and DAMA. Revised Papers (Lecture Notes in Computer Science Vol.2465). Berlin, Germany : Springer-Verlag,. xvii+500, 471-84.
  25. Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J., Gordon, L., & Riedl, J. T. (1997). GroupLens: Applying collaborative filtering to Usenet news. Communications of the ACM, 40(3), 77-87.
  26. Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations. IEEE Internet Computing 7. no. 1, (Jan.-Feb. 2003) , 76-80.
  27. Miller, B. N., Albert, I., Lam, S. K., Konstan, J. A., & Riedl, J. T. (2003, January). MovieLens unplugged: Experiences with an occasionally connected recommender system. Proceedings of ACM 2003 International Conference on Intelligent User Interfaces (Accepted Poster).
  28. Mobasher, B., Jin, X., & Zhou, Y. (2004). Semantically Enhanced Collaborative Filtering on the Web. Proceedings of the European Web Mining Forum, LNAI (Volume TBD). Berlin, Germany : Springer-Verlag. To appear.
  29. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. T. (1994). GroupLens: An open architecture for collaborative filtering of Netnews. Proceedings of the Conference on Computer Supported Cooperative Work. ACM. xi+464, 175-86.
  30. Sarwar, B. M., Karypis, G., Konstan, J. A., & Riedl, J. T. (2000a). Analysis of recommendation algorithms for E-commerce. Proceedings of the 2nd ACM Conference on Electronic Commerce. ACM. vii+271, 158-67.
  31. Sarwar, B. M., Karypis, G., Konstan, J. A., & Riedl, J. T. (2000b). Application of dimensionality reduction in recommender system --A case study. ACM WebKDD 2000 Web Mining for E-Commerce Workshop, Boston, MA.
  32. Sarwar, B. M., Karypis, G., Konstan, J. A., & Riedl, J. T. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International World Wide Web Conference, 285-295.
  33. Shahabi, C., Zarkesh A., Adibi, J., & Shah, V. (1997). Knowledge discovery from users web-page navigation. Proceedings of Workshop on Research Issues in Data Engineering. IEEE Computer Society. 20-31.
  34. Shardanand, U., & Maes, P. (1995). Social information filtering: Algorithms for automating 'Word of Mouth'. Proceedings of CHI '95. ACM. xx+598, 210-17.
  35. Xiao, B., Aimeur, E., & Fernandez, J. M. (2003). PCFinder: an intelligent product recommendation agent for e-commerce. Proceedings IEEE International Conference on E-Commerce. IEEE Computer Society. xiv+414, 181-8.
  36. TERMS AND THEIR DEFINITIONS Recommendation System: A system that retrieves information based on users'