Introduction to Isabelle
Abstract
i Preface Isabelle [10,] is a generic theorem prover. It has been instantiated to support reasoning in several object-logics:
References (19)
- Antony Galton. Logic for Information Technology. Wiley, 1990.
- M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press, 1993.
- Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF: A Mechanised Logic of Computation. LNCS 78. Springer, 1979.
- Paul Hudak and Joseph H. Fasel. A gentle introduction to Haskell. SIGPLAN Notices, 27(5), May 1992.
- Paul Hudak, Simon Peyton Jones, and Philip Wadler. Report on the programming language Haskell: A non-strict, purely functional language. SIGPLAN Notices, 27(5), May 1992. Version 1.2.
- G. P. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Science, 1:27-57, 1975.
- Dale Miller. Unification under a mixed prefix. J. Symb. Comput., 14(4):321-358, 1992.
- Tobias Nipkow and Christian Prehofer. Type reconstruction for type classes. J. Func. Prog., 5(2):201-224, 1995.
- Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-Löf's Type Theory. An Introduction. Oxford University Press, 1990.
- Lawrence C. Paulson. Natural deduction as higher-order resolution. J. Logic Prog., 3:237-258, 1986.
- Lawrence C. Paulson. Logic and Computation: Interactive proof with Cambridge LCF. Cambridge University Press, 1987.
- Lawrence C. Paulson. The foundation of a generic theorem prover. J. Auto. Reas., 5(3):363-397, 1989.
- Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor, Logic and Computer Science, pages 361-386. Academic Press, 1990.
- Lawrence C. Paulson. Designing a theorem prover. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages 415-475. Oxford University Press, 1992.
- Lawrence C. Paulson. ML for the Working Programmer. Cambridge University Press, 2nd edition, 1996.
- F. J. Pelletier. Seventy-five problems for testing automatic theorem provers. J. Auto. Reas., 2:191-216, 1986. Errata, JAR 4 (1988), 235-236 and JAR 18 (1997), 135.
- Steve Reeves and Michael Clarke. Logic for Computer Science. Addison-Wesley, 1990.
- Patrick Suppes. Axiomatic Set Theory. Dover, 1972.
- Larry Wos. Automated reasoning and Bledsoe's dream for the field. In Robert S. Boyer, editor, Automated Reasoning: Essays in Honor of Woody Bledsoe, pages 297-342. Kluwer Academic Publishers, 1991.