Stereo Vision Depth Estimation Methods for Robotic Applications
https://doi.org/10.4018/978-1-61350-326-3.CH021Abstract
AI
AI
Stereo vision serves as a critical tool for extracting depth information in robotic applications, relying heavily on stereo camera systems and corresponding algorithms. A significant focus is placed on dense stereo correspondence algorithms, which are essential for tasks such as navigation, SLAM, and environmental exploration. This paper examines various stereo correspondence methods, categorizes them based on their output densification, and addresses ongoing challenges in robotics-oriented stereo vision, including lighting variability and system calibration issues.
References (69)
- Agrawal, M., Konolige, K., & Bolles, R. (2007). Localization and mapping for autonomous naviga- tion in outdoor terrains: A stereo vision approach. In IEEE Workshop on Applications of Computer Vision. Austin, Texas, USA.
- Barnard, S. T., & Thompson, W. B. (1980). Dis- parity analysis of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(4), 333-340. doi:10.1109/TPAMI.1980.4767032
- Berthouze, L., & Metta, G. (2005). Epigenetic robotics: Modelling cognitive development in robotic systems. Cognitive Systems Research, 6(3), 189-192. doi:10.1016/j.cogsys.2004.11.002
- Binaghi, E., Gallo, I., Marino, G., & Raspanti, M. (2004). Neural adaptive stereo matching. Pattern Recognition Letters, 25(15), 1743-1758. doi:10.1016/j.patrec.2004.07.001
- Borenstein, J., & Koren, Y. (1990). Real-time obstacle avoidance for fast mobile robots in cluttered environments. IEEE Transactions on Systems, Man, and Cybernetics, 19(5), 1179-1187. doi:10.1109/21.44033
- Borenstein, J., & Koren, Y. (1991). The vector field histogram-fast obstacle avoidance for mo- bile robot. IEEE Transactions on Robotics and Automation, 7(3), 278-288. doi:10.1109/70.88137
- Brockers, R., Hund, M., & Mertsching, B. (2005). Stereo vision using cost-relaxation with 3D sup- port regions. In Image and Vision Computing New Zealand (pp. 96-101).
- Corke, P. (2005, November). Machine vision toolbox. IEEE Robotics & Automation Magazine, 12(4), 16-25. doi:10.1109/MRA.2005.1577021
- De Cubber, G., Doroftei, D., Nalpantidis, L., Sirakoulis, G. C., & Gasteratos, A. (2009). Stereobased terrain traversability analysis for robot navigation. In IARP/EURON workshop on robotics for risky interventions and environmental surveillance. Brussels, Belgium.
- Forsyth, D. A., & Ponce, J. (2002). Computer vision: A modern approach. Upper Saddle River, NJ: Prentice Hall.
- Gonzalez, R. C., & Woods, R. E. (1992). Digital image processing. Boston, MA: AddisonWesley Longman Publishing Co., Inc.
- Gu, Z., Su, X., Liu, Y., & Zhang, Q. (2008). Local stereo matching with adaptive support- weight, rank transform and disparity calibration. Pattern Recognition Letters, 29(9), 1230-1235. doi:10.1016/j.patrec.2008.01.032
- Hariyama, M., Takeuchi, T., & Kameyama, M. (2000). Reliable stereo matching for highly-safe intelligent vehicles and its VLSI implementa- tion. In IEEE Intelligent Vehicles Symposium (p. 128133).
- Hartley, R., & Zisserman, A. (2004). Multiple view geometry in computer vision (2nd ed.). Cambridge University Press. doi:10.1017/ CBO9780511811685
- Hirschmuller, H., & Scharstein, D. (2007, June). Evaluation of cost functions for stereo matching. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA.
- Hogue, A., German, A., & Jenkin, M. (2007). Underwater environment reconstruction using stereo and inertial data. In IEEE International Conference on Systems, Man and Cybernetics (p. 2372-2377). Montreal, Canada.
- Iocchi, L., & Konolige, K. (1998). A multireso- lution stereo vision system for mobile robots. In Italian AI Association Workshop on New Trends in Robotics Research.
- Jeong, H., & Park, S. (2004). Generalized trellis stereo matching with systolic array. In Interna- tional Symposium on Parallel and Distributed Processing and Applications (vol. 3358, p. 263- 267). Springer Verlag.
- Kelly, A., & Stentz, A. (1998, May). Stereo vision enhancements for low-cost outdoor autonomous vehicles. In International Conference on Robotics and Automation, Workshop Ws-7, Navigation of Outdoor Autonomous Vehicles.
- Khatib, O. (1996). Motion coordination and reac- tive control of autonomous multi-manipulator sys- tem. Journal of Robotic Systems, 15(4), 300-319.
- Khatib, O. (1999). Robot in human environments: Basic autonomous capabilities. The International Journal of Robotics Research, 18(7), 684-696. doi:10.1177/02783649922066501
- Klancar, G., Kristan, M., & Karba, R. (2004). Wide-angle camera distortions and non-uniform illumination in mobile robot tracking. Journal of Robotics and Autonomous Systems, 46, 125-133. doi:10.1016/j.robot.2003.11.001
- Konolige, K., Agrawal, M., Bolles, R. C., Cowan, C., Fischler, M., & Gerkey, B. P. (2006). Outdoor mapping and navigation using stereo vision. In International Symposium on Experimental Robot- ics (vol. 39, pp. 179-190). Brazil: Springer.
- Kunchev, V., Jain, L., Ivancevic, V., & Finn, A. (2006). Path planning and obstacle avoidance for autonomous mobile robots: A review. In Inter- national Conference on Knowledge-Based and Intelligent Information and Engineering Systems (vol. 4252, pp. 537-544). Springer-Verlag.
- Kyung Hyun, C., Minh Ngoc, N., & Asif Ali, R. (2008). A real time collision avoidance algorithm for mobile robot based on elastic force. Interna- tional Journal of Mechanical . Industrial and Aerospace Engineering, 2(4), 230-233.
- Labayrade, R., Aubert, D., & Tarel, J.-P. (2002). Real time obstacle detection in stereovision on non flat road geometry through V-disparity representa- tion. In IEEE Intelligent Vehicle Symposium (vol. 2, pp. 646-651). Versailles, France.
- Lei, C., Selzer, J., & Yang, Y.-H. (2006). Region- tree based stereo using dynamic programming optimization. IEEE Conference on Computer Vision and Pattern Recognition, 2, 2378-2385.
- Manz, A., Liscano, R., & Green, D. (1993). A comparison of realtime obstacle avoidance meth- ods for mobile robots . In Experimental Robotics ii (pp. 299-316). Springer-Verlag. doi:10.1007/ BFb0036147
- Masrani, D. K., & MacLean, W. J. (2006). A real- time large disparity range stereo-system using FPGAS. In IEEE International Conference on Computer Vision Systems (vol. 3852, p. 13-20).
- Mayoral, R., Lera, G., & Perez-Ilzarbe, M. J. (2006). Evaluation of correspondence errors for stereo. Image and Vision Computing, 24(12), 1288-1300. doi:10.1016/j.imavis.2006.04.006
- Mead, C. (1990). Neuromorphic electronic systems. Proceedings of the IEEE, 78(10), 1629-1636. doi:10.1109/5.58356
- Mingxiang, L., & Yunde, J. (2006, Dec). Trinocular cooperative stereo vision and occlusion detection. IEEE International Conference on Robotics and Biomimetics, 1129-1133.
- Moravec, P. (1987). Certainty grids for mobile robots. In NASA/JPL Space Telerobotics Workshop (Vol. 3, pp. 307-312).
- Mordohai, P., & Medioni, G. G. (2006). Stereo using monocular cues within the tensor vot- ing framework. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(6), 968982. doi:10.1109/TPAMI.2006.129
- Muhlmann, K., Maier, D., Hesser, J., & Manner, R. (2002). Calculating dense disparity maps from color stereo images, an efficient implementation. International Journal of Computer Vision, 47(1-3), 79-88. doi:10.1023/A:1014581421794
- Murray, D., & Little, J. J. (2000). Using real-time stereo vision for mobile robot navi- gation. Autonomous Robots, 8(2), 161-171. doi:10.1023/A:1008987612352
- Nalpantidis, L., Amanatiadis, A., Sirakoulis, G. C., & Gasteratos, A. (in press). An efficient hierarchical matching algorithm for processing uncalibrated stereo vision images and its hardware architecture. IET Image Processing.
- Nalpantidis, L., Chrysostomou, D., & Gasteratos, A. (2009, December). Obtaining reliable depth maps for robotic applications with a quad-camera system. In International Conference on Intelligent Robotics and Applications (vol. 5928, p. 906-916). Singapore: Springer-Verlag.
- Nalpantidis, L., & Gasteratos, A. (2010a). Biologi- cally and psychophysically inspired adaptive sup- port weights algorithm for stereo correspondence. Robotics and Autonomous Systems, 58, 457-464. doi:10.1016/j.robot.2010.02.002
- Nalpantidis, L., & Gasteratos, A. (2010b). Stereo vision for robotic applications in the presence of non-ideal lighting conditions. Image and Vision Computing, 28, 940-951. doi:10.1016/j.ima- vis.2009.11.011
- Nalpantidis, L., Kostavelis, I., & Gasteratos, A. (2009). Stereovision-based algorithm for obstacle avoidance. In International Conference on Intel- ligent Robotics and Applications (vol. 5928, pp. 195-204). Singapore: Springer-Verlag.
- Nalpantidis, L., Sirakoulis, G. C., & Gasteratos, A. (2008a). A dense stereo correspondence algo- rithm for hardware implementation with enhanced disparity selection. In 5th Hellenic Conference on Artificial Intelligence (vol. 5138, pp. 365-370). Syros, Greece: Springer-Verlag.
- Nalpantidis, L., Sirakoulis, G. C., & Gasteratos, A. (2008b). Review of stereo vision algorithms: From software to hardware. International Journal of Optomechatronics, 2(4), 435-462. doi:10.1080/15599610802438680
- Ogale, A. S., & Aloimonos, Y. (2005a, April). Robust contrast invariant stereo correspondence. In IEEE International Conference on Robotics and Automation (pp. 819-824).
- Ogale, A. S., & Aloimonos, Y. (2005b). Shape and the stereo correspondence problem. International Journal of Computer Vision, 65(3), 147-162. doi:10.1007/s11263-005-3672-3
- Ogale, A. S., & Aloimonos, Y. (2007). 04). A roadmap to the integration of early visual modules. International Journal of Computer Vision, 72(1), 9-25. doi:10.1007/s11263-006-8890-9
- Ohya, A., Kosaka, A., & Kak, A. (1998). Vision- based navigation of mobile robot with obstacle avoidance by single camera vision and ultrasonic sensing. IEEE Transactions on Robotics and Au- tomation, 14(6), 969-978. doi:10.1109/70.736780
- Park, S., & Jeong, H. (2007). Real-time stereo vision FPGA chip with low error rate. In Interna- tional Conference on Multimedia and Ubiquitous Engineering (pp. 751-756).
- Pinoli, J. C., & Debayle, J. (2007). Logarithmic adaptive neighborhood image processing (LA- NIP): Introduction, connections to human bright- ness perception, and application issues. EURASIP Journal on Advances in Signal Processing, (1): 114-135.
- Ruigang, Y., Welch, G., & Bishop, G. (2002). Real-time consensus-based scene reconstruction using commodity graphics hardware. 10th Pacific Conference on Computer Graphics and Applica- tions, (pp. 225-234).
- Scharstein, D., & Szeliski, R. (2002). A tax- onomy and evaluation of dense two-frame ste- reo correspondence algorithms. International Journal of Computer Vision, 47(1-3), 7-42. doi:10.1023/A:1014573219977
- Schirmacher, H., Li, M., & Seidel, H.-P. (2001). On-the-fly processing of generalized lumigraphs (pp. 165-173). Eurographics.
- Schreer, O. (1998). Stereo vision-based naviga- tion in unknown indoor environment. In 5th European Conference on Computer Vision (vol. 1, pp. 203-217).
- Shimonomura, K., Kushima, T., & Yagi, T. (2008). Binocular robot vision emulating disparity computation in the primary visual cortex. Neu- ral Networks, 21(2-3), 331-340. doi:10.1016/j. neunet.2007.12.033
- Siegwart, R., & Nourbakhsh, I. R. (2004). In- troduction to autonomous mobile robots. Mas- sachusetts: MIT Press.
- Sim, R., & Little, J. J. (2009). Autonomous vision-based robotic exploration and mapping using hybrid maps and particle filters. Image and Vision Computing, 27(1-2), 167-177. (Canadian Robotic Vision 2005 and 2006)
- Soquet, N., Aubert, D., & Hautiere, N. (2007). Road segmentation supervised by an extended V-disparity algorithm for autonomous navigation. In IEEE Intelligent Vehicles Symposium (pp. 160- 165). Istanbul, Turkey.
- Sun, C., & Peleg, S. (2003). Fast panoramic stereo matching using cylindrical maximum surfaces. IEEE Trans. SMC Part B, 34, 760-765.
- Vandorpe, J., Van Brussel, H., & Xu, H. (1996). Exact dynamic map building for a mobile robot using geometrical primitives produced by a 2d range finder. In IEEE International Conference on Robotics and Automation (pp. 901-908). Min- neapolis, USA.
- Wiegand, T., Sullivan, G., Bjntegaard, G., & Luthra, A. (2003). Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7), 560-576. doi:10.1109/TCSVT.2003.815165
- Wilburn, B., Smulski, M., Lee, K., & Horowitz, M. A. (2002). The light field video camera. In Media Processors (p. 29-36).
- Yang, J. C., Everett, M., Buehler, C., & Mcmil- lan, L. (2002). A real-time distributed light field camera. In Eurographics Workshop on Rendering (pp. 77-86).
- Yin, P., Tourapis, H., Tourapis, A., & Boyce, J. (2003). Fast mode decision and motion estimation for JVT/H.264. In IEEE International Conference on Image Processing (vol. 3, pp. 853-856).
- Yoon, K.-J., & Kweon, I. S. (2006a). Adaptive support-weight approach for correspondence search. IEEE Transactions on Pattern Analy- sis and Machine Intelligence, 28(4), 650-656. doi:10.1109/TPAMI.2006.70
- Yoon, K.-J., & Kweon, I. S. (2006b). Correspon- dence search in the presence of specular highlights using specular-free two-band images. In 7th Asian Conference on Computer Vision (vol. 3852, pp. 761-770). Hyderabad, India: Springer.
- Yoon, K.-J., & Kweon, I. S. (2006c). Stereo matching with symmetric cost functions. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (vol. 2, pp. 2371-2377).
- Zach, C., Karner, K., & Bischof, H. (2004). Hierar- chical disparity estimation with programmable 3D hardware. In International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (pp. 275-282).
- Zhao, J., Katupitiya, J., & Ward, J. (2007). Global correlation based ground plane estimation using V-disparity image. In IEEE International Confer- ence on Robotics and Automation (pp. 529-534). Rome, Italy.
- Zitnick, C. L., & Kanade, T. (2000). A coopera- tive algorithm for stereo matching and occlusion detection. IEEE Transactions on Pattern Analy- sis and Machine Intelligence, 22(7), 675-684. doi:10.1109/34.865184