Academia.eduAcademia.edu

Outline

Transport in quantum wires

2002, Pramana

https://doi.org/10.1007/S12043-002-0007-Z

Abstract

With a brief introduction to one-dimensional channels and conductance quantisation in mesoscopic systems, we discuss some recent experimental puzzles in these systems, which include reduction of quantised conductances and an interesting odd-even effect in the presence of an in-plane magnetic field. We then discuss a recent non-homogeneous Luttinger liquid model proposed by us, which addresses and gives an explanation for the reduced conductances and the odd-even effect. We end with a brief summary and discussion of future projects.

FAQs

sparkles

AI

What is the significance of reduced conductance in quantum wires under varying temperatures?add

Experiments reveal that conductance quantization in quantum wires reduces below N × g0, depending on temperature and wire length. For instance, Yacoby et al. observed significant renormalization of step heights between T = 0.3K to 25K.

How does the model account for conductance quantization in Luttinger liquids?add

The studied model incorporates short Luttinger liquid regions at contacts, yielding flat conductance plateau renormalizations independent of gate voltage. This approach effectively describes the experimental findings of uniform conductance reductions and odd-even effects.

What experimental behaviors indicate the odd-even effect in quantum wire conductance?add

Liang et al. demonstrated odd-even conductance step splitting with in-plane magnetic fields, where odd spin configurations experienced less renormalization. At 11T, differential conductance between successive pairs of spin-split subbands alternated, confirming the odd-even effect.

How does the interaction parameter K affect transport properties in Luttinger liquids?add

In Luttinger liquids, the interaction parameter K determines the scaling behavior of correlation functions; for repulsive interactions, K < 1 leads to reduced conductance. This parameter varies based on electron density and channel characteristics, influencing quantum wire transport.

What are the implications of modeling contacts as Luttinger liquids?add

Modeling contacts as Luttinger liquids allows for capturing many-body effects crucial to understanding observed conductance behaviors. This method explains universal conductance properties while accounting for interaction-driven discrepancies in quantization observed in experimental setups.

References (18)

  1. B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988);
  2. D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie and G. A. C. Jones, J. Phys. C 21, L209 (1988).
  3. S. Tarucha, T. Honda and T. Saku, Sol. St. Comm. 94, 413 (1995).
  4. A. Yacoby, H. L. Stormer, N. S. Wingreen, L. N. Pfeiffer, K. W. Baldwin and K. W. West, Phys. Rev. Lett. 77, 4612 (1996).
  5. B. E. Kane, G. R. Facer, A. S. Dzurak, N. E. Lumpkin, R. G. Clark, L. N. Pfeiffer and K. W. West, App. Phys. Lett. 72, 3506 (1998).
  6. C.-T. Liang, M. Pepper, M. Y. Simmons, C. G. Smith and D. A. Ritchie, Phys. Rev. B 61, 9952 (2000).
  7. K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, W. R. Tribe, M. Y. Simmons and D. A. Ritchie, Phys. Rev. B 61, 13365 (2000).
  8. R. de Picciotto, H. L. Stormer, A. Yacoby, L. N. Pfeiffer, K. W. Baldwin and K. W. West, Phys. Rev. Lett. 85, 1730 (2000).
  9. For a recent review of LL and bosonisation, see S. Rao and D. Sen, cond-mat/0005492.
  10. S. Datta, Electronic transport in mesoscopic systems (Cambridge Uni- versity Press, Cambridge, 1995);
  11. Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, New York, 1997).
  12. C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233 (1992).
  13. A. Furusaki and N. Nagaosa, Phys. Rev. B 47, 4631 (1993);
  14. I. Safi and H. J. Schulz, Phys. Rev. B 52, 17040 (1995);
  15. D. L. Maslov and M. Stone, Phys. Rev. B 52, 5539 (1995).
  16. S. Lal, S. Rao and D. Sen, cond-mat/0012097, to appear in Phys. Rev. Lett.
  17. S. Lal, S. Rao and D. Sen, cond-mat/0104402, submitted to Phys. Rev. B.
  18. D. J. Reilly, G. R. Facer, A. S. Dzurak, B. E. Kane, R. G. Clark, P. J. Stiles, J. L. O'Brien, N. E. Lumpkin, L. N. Pfeiffer and K. W. West, cond-mat/0001174.