Academia.eduAcademia.edu

Outline

Some remarks on the integration of the Poisson algebra

1996, Journal of Geometry and Physics

https://doi.org/10.1016/0393-0440(95)00039-9

Abstract

We prove that the Poisson algebra of certain non compact symplectic man ifolds is isomorphic to a Lie algebra of vector fields on a smooth manifold. We also prove the integrability of the Poisson algebra of functions with compact supports. Finally we discuss and extend the notion of integrability of infinite dimensional Lie algebras.

References (15)

  1. lJ Adams M. Ratiu T. Schmid R. The Lie Group Structure of DiJJeomor phism Groups and Invertible Fourier Integral Operators with Applications. In Infinte Dimensional Groups with Apllicat ions , Vi. Kae Editor, MSRI Pub.4, 1-69.
  2. Banyaga A.Sur la structure du groupe des diJJeomorphismes qui preser vent une forme symplectique. Comment. Math. Helv. 53,174-227 (1978)
  3. -On Fixed Points of Symplectic Maps. Inventiones math. 56,215-229 (1980)
  4. Chen K.T.Iterated path integrals. Bull. of Am. Math. Soc. 83 (5), 831-879 (1977)
  5. Dumortier F. Takens F. Characterisation of compactness of symplectic manifolds Soc. Bras. Math. 4, 167-173 (1973)
  6. Kostant B. Quantization and unitary representations. Springer Lectures Notes in Math. vol. 170, pp 87-208.
  7. Haefliger A. Sur les classes caracteristiques des feuilletages Seminaire Bourbaki (06-1972)
  8. Leslie J. Two classes of classical subgroups of DiJJ(M). J. Diff. Geom. 5 (1971) pp 427-435.
  9. -A remark on the group of automorphisms of a foliation having a dense leaf. J. Diff. Geom. 7 (1972) pp 597-601. [10J On the Lie subgroups of infinite dimensional Lie groups. Bull.
  10. A.M.S. vol 16, #1 jan. 1987
  11. Milnor J. Remarks on infinite dimensional Lie groups. In Relativity, Groups and Topology II, Les Bouches Session XL, 1983. B.S. de Witt & R. Stora Editors. North-Holland, Amsterdam (1984)
  12. Ratiu T. Schmid R. The diJJerentiable structure of three remarkable diJJeomorphisms groups. Math. Z. 177,81-100 (1981)
  13. Souriau J .-M. Structures des systemes dynamiques. Dunod, Paris 1969. [14J -Groupes diJJerentiels et Physique Mathematique. Travaux en Cours, Hermann (1984)
  14. 15J Van Est W.T. Une demonstration d'Elie Cartan du troisieme theoreme de Lie. Actions Hamiltoniennes de groupes. Troisieme theoreme de Lie (P. Dazord, N. Desolneux-Moulis, J.-M. Morvan, ed) Travaux en cours, vol 27, 1987, Hermann, Paris.
  15. Weinstein A. Lectures on symplectic manifolds. Reg. Com. Serle in Math. Vol 29. Amer. Math. Soc. Rhode Island, Providence (1977) A. Banyaga Department of Mathematics. The Pennsylvania State University. University Park, PA 16802 (USA).