Interfacing biocatalysis and organic synthesis
2007, Journal of Chemical Technology & Biotechnology
https://doi.org/10.1002/JCTB.1761Abstract
The path to new chemical entities often shows the limitations of existing tools both in biocatalysis and organic chemistry. Organic synthetic procedures to prepare a compound in a target-oriented synthesis can damage other functional parts of the molecule. Protection-deprotection schemes can lead to a dead end, when a certain protecting group cannot be cleaved off. In biocatalysis, on the other hand, the required biocatalytic toolbox and methodology might not be readily available, therefore limiting a biocatalytic approach. New toolboxes, ingredients, and methodologies at the interface of classical organic synthesis and biocatalytic reactions bridge the gap between these two areas. Since product isolation and purification involves a substantial amount of time in the preparation of chemicals, methodologies to simplify these tasks are necessary to get the pure product into the bottle with less work-up time.
Key takeaways
AI
AI
- New methodologies at the interface of biocatalysis and organic synthesis improve efficiency and reduce waste.
- Bottlenecks in synthesis include selectivity issues and product isolation challenges that hinder progress.
- Directed evolution enhances enzyme properties, facilitating biocatalytic transformations under specific conditions.
- The economic drive for environmentally friendly processes promotes the integration of biocatalysis in chemical production.
- Catalytic asymmetric synthesis is crucial for developing single-enantiomer drugs, addressing safety and waste concerns.
References (71)
- Nicolaou KC and Snyder SA, Classics in Total Synthesis II. Wiley-VCH, Weinheim (2003).
- Reichstein T and Gr üssner A, Eine ergiebige Synthese der L- Ascorbinsäure (vitamin C). Helv Chim Acta 17:311-328 (1934).
- Clardy J and Walsh C, Lessons from natural molecules. Nature 432:829-837 (2004).
- Dobson CM, Chemical space and biology. Nature 432:824-828 (2004).
- Corey EJ and Cheng XM, The Logic of Chemical Synthesis. John Wiley & Sons, New York (1989).
- Ho TL, Tactics of Organic Synthesis. John Wiley & Sons, New York (1994).
- Serra MA and de la Torre MC, Dead Ends and Detours -Direct Ways to Successful Total Synthesis. Wiley-VCH, Weinheim (2004).
- Zaragoza DF, Side Reactions in Organic Synthesis. Wiley-VCH, Weinheim (2005).
- Seebach D, Organic synthesis -where now? Angew Chem Int Edn 29:1320-1367 (1990).
- Drauz K and Waldmann H, Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook, 2nd edn. Wiley-VCH, Weinheim Vol. I-III (2002).
- Bommarius AS and Riebel BR, Biocatalysis. Wiley-VCH, Wein- heim (2004).
- Roberts S, Preparative Biotransformations. Whole Cell and Isolated Enzymes in Organic Synthesis. John Wiley & Sons, Chichester (1989).
- Faber K, Biotransformations in Organic Chemistry, 5th edn. Springer (2004).
- Liese A, Seelbach K and Wandrey C (eds), Industrial Biotrans- formations, 2nd edn. Wiley-VCH, Weinheim (2006).
- Pasteur L, Mémoire sur la fermentation de l'acide tartrique, C r hebd séances Acad Sci. 46:615-618 (1858).
- Pasteur L, Note relative au Penicillium glaucum et à la dissymétrie moléculaire des produits organiques naturels. C r hebd séances Acad Sci 51:298-299 (1860).
- Walsh C, Enzymatic Reaction Mechanisms., WH Freeman, San Francisco (1979).
- Silverman RB, The Organic Chemistry of Enzyme-Catalyzed Reactions. Academic Press, San Diego (2000).
- Tanaka K, Solvent-free Organic Synthesis. Wiley-VCH, Wein- heim (2003).
- Grieco PA (ed.), Organic Synthesis in Water. Blackie Academic & Professional, London (1998).
- Lindstr öm UM, Stereoselective organic reactions in water. Chem Rev 102:2751-2772 (2002).
- Li CJ, Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update. Chem Rev 105:3095-3165 (2005).
- Klibanov AM, Improving enzymes by using them in organic solvents. Nature 409:241-246 (2001).
- Carrea G and Riva S, Properties and synthetic applications of enzymes in organic solvents. Angew Chemie Int Edn 39:2226-2254 (2000).
- Kociensky PJ, Protecting Groups, 3rd edn. Georg Thieme Verlag, Stuttgart (2004).
- Kadereit D and Waldmann H, Enzymatic protecting group techniques. Chem Rev 101:3367-3396 (2001).
- Knowles WS, Asymmetric hydrogenations. Angew Chem Int Edn 41:1998-2007 (2002).
- Noyori R, Asymmetric catalysis: science and opportunities, Angew Chem Int Edn 41:2008-2022 (2002).
- Sharpless KB, Searching for new reactivity. Angew Chem Int Edn 41:2024-2032 (2002).
- Yazbeck DR, Martinez CA, Hu S and Tao J, Challenges in the development of an efficient enzymatic process in the pharmaceutical industry. Tetrahedron: Asymmetry 15:2757-2763 (2004).
- Farina V, Reeves JT, Senanayake CH and Song JJ, Asymmetric synthesis of active pharmaceutical ingredients. Chem Rev 106:2734-2793 (2006).
- Jacobsen EN, Pfaltz A and Yamamoto H (eds), Comprehensive Asymmetric Catalysis. Springer, Berlin (1999).
- Leresche JE and Meyer HP, Chemocatalysis and biocatalysis (biotransformation) some thoughts of a chemist and of a biotechnologist. Org Process Res Dev 10:572-580 (2006).
- Blaser HU and Schmidt E (eds), Asymmetric Catalysis on Industrial Scale. Wiley-VCH, Weinheim (2004).
- Caron S, Dugger RW, Gut Ruggeri S, Ragan JA and Brown Ripin DH, Large-scale oxidations in the pharmaceutical industry. Chem Rev 106:2943-2986 (2006).
- Hu QY, Zhou G and Corey EJ, Application of chiral cationic catalysts to several classical syntheses of racemic natural products transforms them into highly enantioselective pathways. J Am Chem Soc 126:13708-13713 (2004).
- Baxendale IR and Ley SV, Synthesis of alkaloid natural products using solid-supported reagents and scavengers. Current Org Chem 9:521-1534 (2005).
- Arnold FH and Georgiu G (eds), Directed Enzyme Evolution: Screening and Selection Methods, Methods of Molecular Biology Vol. 230. Humana Press Inc., New Jersey (2003).
- Reetz MT, Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications. Proc Natl Acad Sci 101:5716-5722 (2004).
- Alphand V, Carrea G, Furstoss R, Woodley JM and Wohlge- muth R, Towards large-scale synthetic applications of Baeyer- Villiger monooxygenases. Trends Biotechnol 21:318-323 (2003).
- Hilker I, Alphand V, Wohlgemuth R and Furstoss R, Microbial Transformations 56. Preparative scale asymmetric Baeyer- Villiger oxidation using a highly productive ''two-in-one'' in situ SFPR concept. Adv Synth Catal 346:203-214 (2004).
- Hilker I, Wohlgemuth R, Alphand V and Furstoss R, Microbial transformations 59. First kilogram scale asymmetric microbial Baeyer-Villiger oxidation with optimized productivity using a resin-based in situ SFPR strategy. Biotechnol Bioeng 92:702-710 (2005).
- Hilker I, Gutierrez MC, Alphand V, Wohlgemuth R and Furstoss R, Microbiological transformations 57. Facile and efficient resin-based in situ SFPR preparative scale synthe- sis of an enantiopure ''unexpected'' lactone regioisomer via a Baeyer-Villiger oxidation process. Org Lett 6:955-1958 (2004).
- Hilker I, Baldwin C, Alphand V, Furstoss R, Woodley J and Wohlgemuth R, On the influence of oxygen and cell concentration in an SFPR whole cell biocatalytic Baeyer- Villiger oxidation process. Biotechnol Bioeng 93:1138-1144 (2006).
- Gibson M, Nur-e-alam M, Lipata F, Oliveira MA and Rohr J, Characterization of kinetics and products of the Baeyer- Villiger oxygenase MtmOIV, the key enzyme of the biosynthetic pathway toward the natural product anticancer drug Mithramycin from Streptomyces argillaceus. J Am Chem Soc 127:17594-17595 (2005).
- Kolb HC, VanNieuwenhenhze MS and Sharpless KB, Cat- alytic asymmetric dihydroxylation. Chem Rev 94:2483-2547 (1994).
- Corey EJ and Zhang J, Highly effective transition structure designed catalyst for the enantio-and position-selective dihydroxylation of poly-isoprenoids. Org Lett 3:3211-3214 (2001).
- Yildirim S, Franco T, Wohlgemuth R, Kohler HP, Witholt B and Schmid A, Recombinant chlorobenzene dioxygenase from Pseudomonas sp. P51: a biocatalyst for regiose- lective oxidation of aromatic nitriles. Adv Synth Catal 347:1060-1073 (2005).
- Yildirim S, Ruinatscha R, Gross R, Wohlgemuth R, Kohler HP, Witholt B, et al, Selective hydrolysis of the nitrile group of cis-Dihydrodiols. J Mol Catal B: Enzymatic 38:76-83 (2006).
- Boyd DR and Bugg TDH, Arene cis-dihydrodiol formation: from biology to application. Org Biomol Chem 4:181-192 (2006).
- Ohta H and Tetsukawa H, Microbial epoxidation of long-chain terminal olefins. J Chem Soc, Chem Commun 849-850 (1978).
- Katsuki T and Sharpless KB, The first practical method for asymmetric epoxidation. J Am Chem Soc 102:5974-5976 (1980).
- Park JB, B ühler B, Habicher T, Hauer B, Panke S, Witholt B et al, The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation. Biotechnol Bioeng 95:501-512 (2006).
- De Vries EJ and Janssen DB, Biocatalytic conversion of epoxides. Curr Opin Biotechnol 14:414-420 (2003).
- Mylerova V and Martinkova L, Synthetic applications of nitrile- converting enzymes. Curr Org Chem 7:1279-1295 (2003).
- Wang MX, Enantioselective biotransformations of nitriles in organic synthesis. Topics Catal 35:117-130 (2005).
- Bergeron S, Chaplin DA, Edwards JH, Ellis BSW, Hill CL, Holt-Tiffin K, et al, Nitrilase-catalysed desymmetrisation of 3-hydroxyglutaronitrile: preparation of a statin side-chain intermediate. Org Process Res Dev 10:661-665 (2006).
- Garcia-Urdiales E, Alfonso I and Gotor V, Enantioselective enzymatic desymmetrizations in organic synthesis. Chem Rev 105:313-354 (2005).
- Nicolaou KC, Vourloumis D, Winssinger N and Baran PS, The art and science of total synthesis at the dawn of the twenty-first century. Angew Chem Int Edn 39:44-122 (2000).
- Taylor MS and Jacobsen EN, Asymmetric catalysis by chiral hydrogen-bond donors. Angew Chem Int Edn 45:1520-1543 (2006).
- Shaeri J, Wohlgemuth R and Woodley JM, Semiquantitative process screening for the biocatalytic synthesis of D-xylulose- 5-phosphate. Org Process Res Dev 10:605-610 (2006).
- Ramon DJ and Yus M, Asymmetric multicomponent reac- tions (AMCRs): the new frontier. Angew Chem Int Edn 44:1602-1634 (2005).
- Wessjohann LA, Voigt B and Rivera DG, Diversity oriented one-pot Synthesis of complex macrocycles: very large steroid-peptoid Hybrids from multiple multi-component reactions including bifunctional building blocks. Angew Chem Int Edn 44:4785-4790 (2005).
- Enders D, Huttl MR, Grondal C and Raabe G, Control of four stereocentres in a triple cascade organocatalytic reaction. Nature 441:861-863 (2006).
- Baxendale IR, Griffiths-Jones CM, Ley SV and Tranmer GK, Preparation of the neolignan natural product grossamide by a continuous-flow process. Synlett 3:427-430 (2006).
- Broadwater SJ, Roth SL, Price KE, Kobašlija M and McQuade DT, One-pot multi-step synthesis: a challenge spawning innovation. Org Biomol Chem 3:2899-2906 (2005).
- Koeller KM and Wong CH, Enzymes for chemical synthesis. Nature 409:232-240 (2001).
- Sheldon RA, Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267-278 (2005).
- Burke MD and Schreiber SL, A planning strategy for diversity- oriented synthesis. Angew Chem Int Edn 43:46-58 (2004).
- Belder D, Ludwig M, Wang LW and Reetz MT, Enantioselec- tive catalysis and analysis on a chip. Angew Chem Int Edn 25:2463-2466 (2006).
- Ishige T, Honda K and Shimizu S, Whole organism biocatalysis. Curr Opin Chem Biol 9:74-180 (2005).