Academia.eduAcademia.edu

Outline

Interfacing biocatalysis and organic synthesis

2007, Journal of Chemical Technology & Biotechnology

https://doi.org/10.1002/JCTB.1761

Abstract

The path to new chemical entities often shows the limitations of existing tools both in biocatalysis and organic chemistry. Organic synthetic procedures to prepare a compound in a target-oriented synthesis can damage other functional parts of the molecule. Protection-deprotection schemes can lead to a dead end, when a certain protecting group cannot be cleaved off. In biocatalysis, on the other hand, the required biocatalytic toolbox and methodology might not be readily available, therefore limiting a biocatalytic approach. New toolboxes, ingredients, and methodologies at the interface of classical organic synthesis and biocatalytic reactions bridge the gap between these two areas. Since product isolation and purification involves a substantial amount of time in the preparation of chemicals, methodologies to simplify these tasks are necessary to get the pure product into the bottle with less work-up time.

Key takeaways
sparkles

AI

  1. New methodologies at the interface of biocatalysis and organic synthesis improve efficiency and reduce waste.
  2. Bottlenecks in synthesis include selectivity issues and product isolation challenges that hinder progress.
  3. Directed evolution enhances enzyme properties, facilitating biocatalytic transformations under specific conditions.
  4. The economic drive for environmentally friendly processes promotes the integration of biocatalysis in chemical production.
  5. Catalytic asymmetric synthesis is crucial for developing single-enantiomer drugs, addressing safety and waste concerns.

References (71)

  1. Nicolaou KC and Snyder SA, Classics in Total Synthesis II. Wiley-VCH, Weinheim (2003).
  2. Reichstein T and Gr üssner A, Eine ergiebige Synthese der L- Ascorbinsäure (vitamin C). Helv Chim Acta 17:311-328 (1934).
  3. Clardy J and Walsh C, Lessons from natural molecules. Nature 432:829-837 (2004).
  4. Dobson CM, Chemical space and biology. Nature 432:824-828 (2004).
  5. Corey EJ and Cheng XM, The Logic of Chemical Synthesis. John Wiley & Sons, New York (1989).
  6. Ho TL, Tactics of Organic Synthesis. John Wiley & Sons, New York (1994).
  7. Serra MA and de la Torre MC, Dead Ends and Detours -Direct Ways to Successful Total Synthesis. Wiley-VCH, Weinheim (2004).
  8. Zaragoza DF, Side Reactions in Organic Synthesis. Wiley-VCH, Weinheim (2005).
  9. Seebach D, Organic synthesis -where now? Angew Chem Int Edn 29:1320-1367 (1990).
  10. Drauz K and Waldmann H, Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook, 2nd edn. Wiley-VCH, Weinheim Vol. I-III (2002).
  11. Bommarius AS and Riebel BR, Biocatalysis. Wiley-VCH, Wein- heim (2004).
  12. Roberts S, Preparative Biotransformations. Whole Cell and Isolated Enzymes in Organic Synthesis. John Wiley & Sons, Chichester (1989).
  13. Faber K, Biotransformations in Organic Chemistry, 5th edn. Springer (2004).
  14. Liese A, Seelbach K and Wandrey C (eds), Industrial Biotrans- formations, 2nd edn. Wiley-VCH, Weinheim (2006).
  15. Pasteur L, Mémoire sur la fermentation de l'acide tartrique, C r hebd séances Acad Sci. 46:615-618 (1858).
  16. Pasteur L, Note relative au Penicillium glaucum et à la dissymétrie moléculaire des produits organiques naturels. C r hebd séances Acad Sci 51:298-299 (1860).
  17. Walsh C, Enzymatic Reaction Mechanisms., WH Freeman, San Francisco (1979).
  18. Silverman RB, The Organic Chemistry of Enzyme-Catalyzed Reactions. Academic Press, San Diego (2000).
  19. Tanaka K, Solvent-free Organic Synthesis. Wiley-VCH, Wein- heim (2003).
  20. Grieco PA (ed.), Organic Synthesis in Water. Blackie Academic & Professional, London (1998).
  21. Lindstr öm UM, Stereoselective organic reactions in water. Chem Rev 102:2751-2772 (2002).
  22. Li CJ, Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update. Chem Rev 105:3095-3165 (2005).
  23. Klibanov AM, Improving enzymes by using them in organic solvents. Nature 409:241-246 (2001).
  24. Carrea G and Riva S, Properties and synthetic applications of enzymes in organic solvents. Angew Chemie Int Edn 39:2226-2254 (2000).
  25. Kociensky PJ, Protecting Groups, 3rd edn. Georg Thieme Verlag, Stuttgart (2004).
  26. Kadereit D and Waldmann H, Enzymatic protecting group techniques. Chem Rev 101:3367-3396 (2001).
  27. Knowles WS, Asymmetric hydrogenations. Angew Chem Int Edn 41:1998-2007 (2002).
  28. Noyori R, Asymmetric catalysis: science and opportunities, Angew Chem Int Edn 41:2008-2022 (2002).
  29. Sharpless KB, Searching for new reactivity. Angew Chem Int Edn 41:2024-2032 (2002).
  30. Yazbeck DR, Martinez CA, Hu S and Tao J, Challenges in the development of an efficient enzymatic process in the pharmaceutical industry. Tetrahedron: Asymmetry 15:2757-2763 (2004).
  31. Farina V, Reeves JT, Senanayake CH and Song JJ, Asymmetric synthesis of active pharmaceutical ingredients. Chem Rev 106:2734-2793 (2006).
  32. Jacobsen EN, Pfaltz A and Yamamoto H (eds), Comprehensive Asymmetric Catalysis. Springer, Berlin (1999).
  33. Leresche JE and Meyer HP, Chemocatalysis and biocatalysis (biotransformation) some thoughts of a chemist and of a biotechnologist. Org Process Res Dev 10:572-580 (2006).
  34. Blaser HU and Schmidt E (eds), Asymmetric Catalysis on Industrial Scale. Wiley-VCH, Weinheim (2004).
  35. Caron S, Dugger RW, Gut Ruggeri S, Ragan JA and Brown Ripin DH, Large-scale oxidations in the pharmaceutical industry. Chem Rev 106:2943-2986 (2006).
  36. Hu QY, Zhou G and Corey EJ, Application of chiral cationic catalysts to several classical syntheses of racemic natural products transforms them into highly enantioselective pathways. J Am Chem Soc 126:13708-13713 (2004).
  37. Baxendale IR and Ley SV, Synthesis of alkaloid natural products using solid-supported reagents and scavengers. Current Org Chem 9:521-1534 (2005).
  38. Arnold FH and Georgiu G (eds), Directed Enzyme Evolution: Screening and Selection Methods, Methods of Molecular Biology Vol. 230. Humana Press Inc., New Jersey (2003).
  39. Reetz MT, Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications. Proc Natl Acad Sci 101:5716-5722 (2004).
  40. Alphand V, Carrea G, Furstoss R, Woodley JM and Wohlge- muth R, Towards large-scale synthetic applications of Baeyer- Villiger monooxygenases. Trends Biotechnol 21:318-323 (2003).
  41. Hilker I, Alphand V, Wohlgemuth R and Furstoss R, Microbial Transformations 56. Preparative scale asymmetric Baeyer- Villiger oxidation using a highly productive ''two-in-one'' in situ SFPR concept. Adv Synth Catal 346:203-214 (2004).
  42. Hilker I, Wohlgemuth R, Alphand V and Furstoss R, Microbial transformations 59. First kilogram scale asymmetric microbial Baeyer-Villiger oxidation with optimized productivity using a resin-based in situ SFPR strategy. Biotechnol Bioeng 92:702-710 (2005).
  43. Hilker I, Gutierrez MC, Alphand V, Wohlgemuth R and Furstoss R, Microbiological transformations 57. Facile and efficient resin-based in situ SFPR preparative scale synthe- sis of an enantiopure ''unexpected'' lactone regioisomer via a Baeyer-Villiger oxidation process. Org Lett 6:955-1958 (2004).
  44. Hilker I, Baldwin C, Alphand V, Furstoss R, Woodley J and Wohlgemuth R, On the influence of oxygen and cell concentration in an SFPR whole cell biocatalytic Baeyer- Villiger oxidation process. Biotechnol Bioeng 93:1138-1144 (2006).
  45. Gibson M, Nur-e-alam M, Lipata F, Oliveira MA and Rohr J, Characterization of kinetics and products of the Baeyer- Villiger oxygenase MtmOIV, the key enzyme of the biosynthetic pathway toward the natural product anticancer drug Mithramycin from Streptomyces argillaceus. J Am Chem Soc 127:17594-17595 (2005).
  46. Kolb HC, VanNieuwenhenhze MS and Sharpless KB, Cat- alytic asymmetric dihydroxylation. Chem Rev 94:2483-2547 (1994).
  47. Corey EJ and Zhang J, Highly effective transition structure designed catalyst for the enantio-and position-selective dihydroxylation of poly-isoprenoids. Org Lett 3:3211-3214 (2001).
  48. Yildirim S, Franco T, Wohlgemuth R, Kohler HP, Witholt B and Schmid A, Recombinant chlorobenzene dioxygenase from Pseudomonas sp. P51: a biocatalyst for regiose- lective oxidation of aromatic nitriles. Adv Synth Catal 347:1060-1073 (2005).
  49. Yildirim S, Ruinatscha R, Gross R, Wohlgemuth R, Kohler HP, Witholt B, et al, Selective hydrolysis of the nitrile group of cis-Dihydrodiols. J Mol Catal B: Enzymatic 38:76-83 (2006).
  50. Boyd DR and Bugg TDH, Arene cis-dihydrodiol formation: from biology to application. Org Biomol Chem 4:181-192 (2006).
  51. Ohta H and Tetsukawa H, Microbial epoxidation of long-chain terminal olefins. J Chem Soc, Chem Commun 849-850 (1978).
  52. Katsuki T and Sharpless KB, The first practical method for asymmetric epoxidation. J Am Chem Soc 102:5974-5976 (1980).
  53. Park JB, B ühler B, Habicher T, Hauer B, Panke S, Witholt B et al, The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation. Biotechnol Bioeng 95:501-512 (2006).
  54. De Vries EJ and Janssen DB, Biocatalytic conversion of epoxides. Curr Opin Biotechnol 14:414-420 (2003).
  55. Mylerova V and Martinkova L, Synthetic applications of nitrile- converting enzymes. Curr Org Chem 7:1279-1295 (2003).
  56. Wang MX, Enantioselective biotransformations of nitriles in organic synthesis. Topics Catal 35:117-130 (2005).
  57. Bergeron S, Chaplin DA, Edwards JH, Ellis BSW, Hill CL, Holt-Tiffin K, et al, Nitrilase-catalysed desymmetrisation of 3-hydroxyglutaronitrile: preparation of a statin side-chain intermediate. Org Process Res Dev 10:661-665 (2006).
  58. Garcia-Urdiales E, Alfonso I and Gotor V, Enantioselective enzymatic desymmetrizations in organic synthesis. Chem Rev 105:313-354 (2005).
  59. Nicolaou KC, Vourloumis D, Winssinger N and Baran PS, The art and science of total synthesis at the dawn of the twenty-first century. Angew Chem Int Edn 39:44-122 (2000).
  60. Taylor MS and Jacobsen EN, Asymmetric catalysis by chiral hydrogen-bond donors. Angew Chem Int Edn 45:1520-1543 (2006).
  61. Shaeri J, Wohlgemuth R and Woodley JM, Semiquantitative process screening for the biocatalytic synthesis of D-xylulose- 5-phosphate. Org Process Res Dev 10:605-610 (2006).
  62. Ramon DJ and Yus M, Asymmetric multicomponent reac- tions (AMCRs): the new frontier. Angew Chem Int Edn 44:1602-1634 (2005).
  63. Wessjohann LA, Voigt B and Rivera DG, Diversity oriented one-pot Synthesis of complex macrocycles: very large steroid-peptoid Hybrids from multiple multi-component reactions including bifunctional building blocks. Angew Chem Int Edn 44:4785-4790 (2005).
  64. Enders D, Huttl MR, Grondal C and Raabe G, Control of four stereocentres in a triple cascade organocatalytic reaction. Nature 441:861-863 (2006).
  65. Baxendale IR, Griffiths-Jones CM, Ley SV and Tranmer GK, Preparation of the neolignan natural product grossamide by a continuous-flow process. Synlett 3:427-430 (2006).
  66. Broadwater SJ, Roth SL, Price KE, Kobašlija M and McQuade DT, One-pot multi-step synthesis: a challenge spawning innovation. Org Biomol Chem 3:2899-2906 (2005).
  67. Koeller KM and Wong CH, Enzymes for chemical synthesis. Nature 409:232-240 (2001).
  68. Sheldon RA, Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267-278 (2005).
  69. Burke MD and Schreiber SL, A planning strategy for diversity- oriented synthesis. Angew Chem Int Edn 43:46-58 (2004).
  70. Belder D, Ludwig M, Wang LW and Reetz MT, Enantioselec- tive catalysis and analysis on a chip. Angew Chem Int Edn 25:2463-2466 (2006).
  71. Ishige T, Honda K and Shimizu S, Whole organism biocatalysis. Curr Opin Chem Biol 9:74-180 (2005).