Academia.eduAcademia.edu

Outline

Soft sensors in bioprocessing: A status report and recommendations

2012, Biotechnology Journal

https://doi.org/10.1002/BIOT.201100506

Abstract
sparkles

AI

This expert report provides a comprehensive overview of the current state of soft sensors in bioprocessing, particularly within pharmaceutical manufacturing while acknowledging their relevance in other bioprocess fields. It defines soft sensors as software-based tools that simulate hardware functionality for online monitoring and presents critical needs within the industry for improving operational performance, reliability, and economic factors. Recommendations for enhancing these systems and addressing regulatory challenges are outlined to foster better integration and acceptance in bioprocess operations.

References (46)

  1. Schügerl, K., Bioreaction Engineering, Bioprocess Monitor- ing, Volume 3. John Wiley & Sons, Chichester, UK, 1997.
  2. Sonnleitner, B., Instrumentation of biotechnological pro - cesses. Adv. Biochem. Eng. Biotechnol. 1999, 66, 1-64.
  3. Mandenius, C. F., Recent developments in monitoring, mod- elling and control of biological production systems. Bioproc. Biosys. Eng. 2004, 26, 347-351.
  4. United States Federal Food and Drug Administration (USA). Guidance for industry, process analytical technology, FDA, 2004.
  5. European Medicines Agency, EMA-FDA pilot program for parallel assessment of Quality by Design applications. Doc- ument EMA/172347/2011, 2011.
  6. International conference on Harmonization (ICH) Docu- ment ICH Q8-Q10, 2005-2010. Available at www.ich.org.
  7. Glassey J., Gernaey K.V., Oliveria R., Striedner G. et al., PAT for biopharmaceuticals. Biotechnol. J. 2011, 6, 369-377.
  8. Mandenius C.-F., Graumann K., Schultz T. W., Premsteller A., et al., Quality-by-Design (QbD) for biotechnology-relat- ed phamaceuticals. Biotechnol. J. 2009, 4, 600-609.
  9. Kadlec P., Gabrys B., Strandt S., Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33, 795-814.
  10. Chéruy A., Software sensors in bioprocess engineering. J. Biotechnol. 1997, 52, 193-199.
  11. Zamprogna E., Barolo M., Seborg D. E., Development of a soft sensor for a batch distillation column using linear and nonlinear PLS regression techniques. Contr. Eng. Pract. 2004, 12, 917-929.
  12. Choi D. J., Park H., A hybrid artificial neural network as a software sensor for optimal control of a wastewater treat- ment process. Water Res. 2001, 35, 3959-3967.
  13. Montague G. A., Morris A. J., Tham M. T., Enhancing bio- process operability with generic software sensors, J. Biotechnol. 1992, 25, 183-201.
  14. Kiviharju K., Salonen K., Moilanen U., Eerikäinen T., Bio- mass measurement online: the performance of in situ meas- © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim urements and software sensors. J. Ind. Microbiol. Biotechnol. 2008, 35, 657-665.
  15. Sundström H., Enfors S.O., Software sensors for fermenta- tion processes. Bioproc. Biosyst. Eng. 2008, 31, 145-152.
  16. Ödman P., Lindvald Johansen C., Olsson L., Gernaey K.V., Eliasson Lantz A., On-line estimation of biomass, glucose and ethanol in Saccharomyces cerevisiae cultivations using in-situ multi-wavelength fluorescence and software sen- sors. J. Biotechnol. 2009, 144, 102-112.
  17. Warth B., Rajkai G., Mandenius C. F., Evaluation of software sensors for on-line estimation of culture conditions in an Escherichia coli cultivation expressing a recombinant pro- tein. J. Biotechnol. 2010, 147, 37-45.
  18. Qin S. J., Yue H., Dunia R., Self-validating inferential sensors with application to air emission monitoring. Ind. Eng. Chem. Res. 1997, 36, 1675-1685.
  19. Han C., Lee Y. H., Intelligent integrated plant operation sys- tem for six sigma. Ann. Rev. Contr. 2002, 26, 27-43.
  20. Goodwin G.C., Predicting the performance of soft sensors as a route to low cost automation. Ann. Rev. Contr. 2000, 24, 55-66.
  21. Van Impe J. F. M., Vanrolleghem P.A., Iserentant D.M. (Eds.), Advanced Instrumentation, Data Interpretation, and Control of Biotechnological Processes. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.
  22. Scarff M., Arnold S.A., Harvey L.M., McNeil B., Near in- frared spectroscopy for bioprocess monitoring and control: current status and future trends. Crit. Rev. Biotechnol. 2006, 26, 17-39.
  23. Papini M., Olsson L., Eliasson-Lantz A., van den Berg, F. et al. Monitoring of heterologous protein production in yeast using on-line measurements and multivariate data analysis J. Biotechnol. 2007, 131, S183-S183.
  24. Navratil M., Norberg A., Lembrén L., Mandenius C. F., On- line multianalyzer monitoring of biomass, glucose, and ac- etate for growth rate control of a Vibrio cholerae fed-batch cultivation. J. Biotechnol 2005. 115, 67-79.
  25. Peuker T., Riedel M., Kaiser C., Ellert A. et al., At-line deter- mination of glucose, ammonium and acetate in high cell density cultivations of Escherichia coli. Eng. Life Sci. 2004, 4, 138-143.
  26. Kaiser, C., Carvell, J. P., Luttmann, R., A sensitive, compact, in situ biomass measurement system. BioProc. Intern. 2007, 5, 52-56.
  27. Cornelissen G., Bertelsen H.-P., Lenz K., Hahn B. et al., Pro- duction of recombinant proteins with Pichia pastoris in in- tegrated processing. Eng. Life Sci. 2003, 3, 361-370.
  28. Fricke J., Pohlmann K., Tatge F., Lang R. et al., A multi-bio - reactor system for optimal production of malaria vaccines with Pichia pastoris. Biotechnol. J. 2011, 6, 437-451.
  29. Luttmann R., Bitzer G., Hartkopf J., Development of control strategies for high cell density cultivation. Math. Comp. Simul. 1994, 37, 153-164.
  30. Glassey J., Montague G.A., Ward A.C., Kara B., Enhanced su- pervision of recombinant E.coli fermentations via artificial neural networks, Proc. Biochem. 1994, 29, 387-398.
  31. Aehle M., Kuprijanov A., Schaepe S., Simutis R., Lübbert A., Simplified off-gas analyses in animal cell cultures for process monitoring and control purposes. Biotechnol. Lett. 2011, 33, 2103-2110.
  32. Bachinger, T., Mandenius, C.F., Review: Searching process information in the aroma of cell cultures. Trend. Biotechnol. 2000, 18, 494-500.
  33. Turner C, Rudnitskaya A., Legin A., Monitoring batch fer- mentations with an electronic tongue J. Biotechnol. 2003, 103, 87-91.
  34. Scheper T., Hitzmann B., Stärk E., Ulber R., Faurie R., Sos- nitza P., Reardon K.F., Bioanalytics: detailed insight into bio- processes. Anal. Chim. Acta 1999, 400, 121-134.
  35. Bracewell D.G., Brown R.A., Hoare M., Addressing a whole bioprocess in real-time using an optical biosensor -from a recombinant E. coli host. Bioproc. Biosys. Eng. 2004, 26, 271- 282.
  36. Sellick C., Hansen R., Jarvis R., Maqsood A. et al., Rapid monitoring of recombinant antibody production by mam- malian cell cultures using Fourier transform infrared spec- troscopy and chemometrics. Bio technol. Bioeng. 2010, 106, 432-442.
  37. Brewster VL, Ashton L, Goodacre R., Monitoring the glyco- sylation status of proteins using Raman spectroscopy Anal. Chem. 2011 83, 6074-6081
  38. Ignova M., Glassey J., Ward A.C., Montague G.A., Multivari- ate statistical methods in bioprocess fault detection and performance forecasting. Trans. Inst. MC, 1997, 19, 271-279.
  39. Albiol J., Robustr J., Casas, C., Poch M., Biomass estimation in plant cell cultures using an extended Kalman filter. Biotechnol. Prog. 1993, 9, 174-178.
  40. Arnold S.A., Crowley J.; Woods N., Harvey M. L. et al. In-situ near infrared spectroscopy to monitor key analytes in mam- malian cell cultivation. Biotechnol. Bioeng. 2003, 84, 13-19.
  41. Roychoudhury P., O'Kennedy R., McNeil B., Harvey L.M., Multiplexing fibre optic near infrared (NIR) spectroscopy as an emerging technology to monitor industrial bio- processes, Anal. Chim. Acta 2007, 590, 110-117.
  42. Faergestad E.M, Oyaas J., Kohler A., Berg T., Naes T., The use of spectroscopic measurements from full scale industrial production to achieve stable end product quality. J. Food Sci. Technol. 2011, 44, 2266-2272.
  43. Gao Y., Yuan Y-J., Comprehensive quality evaluation of corn steep liquor in 2-keto-L-gulonic acid fermentation. J. Agric. Food Chem.2011, 59, 9845-9853.
  44. Cunha C.C.F., Glassey J., Montague G.A., Albert S. and Mo- han P., An assessment of seed quality and its influence on productivity estimation in an industrial antibiotic fermen- tation. Biotechnol. Bioeng. 2002, 78, 658-669.
  45. Jiang C., Flansburg L., Ghose S., Jorjorian P., Shukla A.A., Defining process design space for a hydrophobic interac- tion chromatography (HIC) purification step: Application of quality by design (QbD) principles, Biotechnol. Bioeng, 2010, 107, 985-997.
  46. Gao Y., Kipling K., Glassey J., Willis, M. et al., Application of agent-based system for bioprocess description and process improvement, Proc. Biochem., 2010, 26, 706-716.