Academia.eduAcademia.edu

Outline

Lattice Schwarzian Boussinesq equation and two-component systems

2012

Abstract

Various new two-component systems related to the lattice Schwarzian Boussinesq equation are constructed in a systematic way from conservation laws. Their multidimensional consistency is demonstrated, Lax pairs, symmetries and conservation laws are derived and an auto-Backlund transformation is constructed. Finally, Yang-Baxter maps from these systems are constructed.

References (15)

  1. Adler V. E., Bobenko A. I. and Suris Yu. B. (2003) Classification of integrable equations on quad-graphs. The consistency approach Comm. Math. Phys. 233 513-543
  2. Adler V. E., Bobenko A. I. and Suris Yu. B. (2004) Geometry of Yang-Baxter Maps: pencils of conics and quadrirational mappings Comm. Anal. Geom. 12 967-1007
  3. Atkinson J. (2008) Bäcklund transformations for integrable lattice equations J. Phys. A: Math. Theor. 41 135202 (8pp)
  4. Bobenko A. I. and Suris Yu. B. (2002) Integrable systems on quad-graphs Int. Math. Res. Notices 2002 573-611
  5. Drinfeld V.G. (1992) On some unsolved problems in quantum group theory, in: Quantum Groups, Lecture Notes in Mathematics Vol. 1510, Springer
  6. Hietarinta J. (2011) Boussinesq-like multi-component lattice equations and multi-dimensional consistency J. Phys. A: Math. Theor. 44, no. 16, 165204 (22 pp)
  7. Nijhoff F.W. (1996) On some "Schwarzian Equations" and their Discrete Analogues. in: Eds. A.S. Fokas and I.M. Gel'fand, Algebraic Aspects of Integrable Systems: In memory of Irene Dorfman, (Birkhäuser Verlag), 237-260
  8. Nijhoff F. W. (2002) Lax pair for the Adler (lattice Krichever-Novikov) system Phys. Lett. A 297 49-58
  9. Nijhoff F. W., Papageorgiou V. G., Capel H. W. and Quispel G. R. W. (1992) The lattice Gel'fand-Dikii hierarchy Inverse Problems 8 597-651
  10. Papageorgiou V., Tongas A. and Veselov A. (2006) Yang-Baxter maps and symmetries of integrable equations on quad-graphs J. Math. Phys. 47 083502 (16pp)
  11. Suris Yu. B. and Veselov A. (2003) Lax matrices for Yang-Baxter maps J. Nonlin. Math. Phys. 10 Suppl. 2, 223-230
  12. Veselov A. P. (2003) Yang-Baxter maps and integrable dynamics Phys. Lett. A 314 214-221
  13. Walker A. J. (2001) Similarity reductions and integrable lattice equations Ph.D. thesis, University of Leeds
  14. Xenitidis P. (2011) Symmetries and conservation laws of the ABS equations and corresponding differential- difference equations of Volterra type J. Phys. A: Math. Theor. 44 435201 (22pp)
  15. Xenitidis P. and Nijhoff F. (2011) Symmetries and conservation laws of lattice Boussinesq equations submit- ted to Phys. Lett. A