Academia.eduAcademia.edu

Outline

Structure and mechanical properties of crab exoskeletons

2008, Acta Biomaterialia

https://doi.org/10.1016/J.ACTBIO.2007.12.010

Abstract

The structure and mechanical properties of the exoskeleton (cuticle) of the sheep crab (Loxorhynchus grandis) were investigated. The crab exoskeleton is a natural composite consisting of highly mineralized chitin-protein fibers arranged in a twisted plywood or Bouligand pattern. There is a high density of pore canal tubules in the direction normal to the surface. These tubules have a dual function: to transport ions and nutrition and to stitch the structure together. Tensile tests in the longitudinal and normal to the surface directions were carried out on wet and dry specimens. Samples tested in the longitudinal direction showed a convex shape and no evidence of permanent deformation prior to failure, whereas samples tested in the normal orientation exhibited a concave shape. The results show that the composite is anisotropic in mechanical properties. Microindentation was performed to measure the hardness through the thickness. It was found that the exocuticle (outer layer) is two times harder than the endocuticle (inner layer). Fracture surfaces after testing were observed using scanning electron microscopy; the fracture mechanism is discussed.

References (38)

  1. Neville AC. Biology of the arthropod cuticle. New York: Springer- Verlag; 1975.
  2. Vincent JFV. Structural biomaterials. Princeton, NJ: Princeton University Press; 1991.
  3. Vincent JFV. Arthropod cuticle: a natural composite shell system. Composites A 2002;33:1311-5.
  4. Vincent JFV, Wegst UGK. Design and mechanical properties of insect cuticle. Arthropod Struct Dev 2004;33:187-99.
  5. Sanchez C, Arribart H, Giraud-Guille MM. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mat 2005;4:277-88.
  6. Raabe D, Sachs C, Romano P. The crustacean exoskeleton as an example of a structurally and mechanically graded biological nano- composite material. Acta Mater 2005;53:4281-92.
  7. Bouligand Y. Twisted fibrous arrangements in biological materials and cholesteric meso phases. Tissue Cell 1972;4:189-217.
  8. Giraud-Guille MM. Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell 1984;16:75-92.
  9. Giraud-Guille MM. Chitin crystals in arthropod cuticles revealed by diffraction contrast transmission electron microscopy. J Struct Biol 1990;103:232-40.
  10. Weiner S, Addadi L. Design strategies in mineralized biological materials. J Mater Chem 1997;7:689-702.
  11. Roer R, Dillaman R. The structure and calcification of the crustacean cuticle. Am Zool 1984;24:893-909.
  12. Giraud-Guille MM. Plywood structure in nature. Curr Opin Solid State Mater Sci 1998;3:221-8.
  13. Lowenstam HA. Minerals formed in organisms. Science 1981;211:1126-31.
  14. Mann S, Webb J, Williams RJP. On biomineralization. New York: VCH; 1989.
  15. Lowenstam HA, Weiner S. On biomineralization. New York: Oxford University Press; 1989.
  16. Giraud-Guille MM, Bouligand Y. Crystal growth in a chitin matrix: the study of calcite development in the crab cuticle. In: Karnicki ZS, Brzeski PJ, Wojtasz-Pajak A, editors. Chitin World. Bremerhaven: Wirtschaftsverlag NW; 1994. p 136-144.
  17. Cameron JN. Post-molt calcification in the blue crab, Callinectes sapidus -timing and mechanism. J Exp Biol 1989;143:285-304.
  18. Hepburn HR, Joffe I, Green N, Nelson KJ. Mechanical properties of a crab shell. Comp Biochem Physiol 1975;50A:551-4.
  19. Joffe I, Hepburn HR, Nelson KJ, Green N. Mechanical properties of a crustacean exoskeleton. Comp Biochem Physiol 1975;50A:545-9.
  20. Melnick CA, Chen S, Mecholsky JJ. Hardness and toughness of exoskeleton material in the stone crab Menippe mercenaria. J Mater Res 1996;11:2903-7.
  21. Raabe D et al. Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue. J Cryst Growth 2005;283:1-7.
  22. Raabe D et al. Structure and crystallographic texture of arthropod bio-composites. Mater Sci Forum 2005;495-497:1665-74.
  23. Raabe D et al. Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mater Sci Eng A 2006;421:143-53.
  24. Sachs C, Fabritius H, Raabe D. Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation. J Mater Res 2006;21:1987-95.
  25. Romano P, Fabritius H, Raabe D. The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material. Acta Biomater 2007;3:301-9.
  26. Jensen GC. Pacific Coast Crabs and Shrimps. Monterey: Sea Challengers; 1995.
  27. Debelius H. Crustacea: Guide of the World. Frankfurt: IKAN- Unterwasserarchiv; 2001.
  28. Menig R, Meyers MH, Meyers MA, Vecchio KS. Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Mater 2000;45:2389-98.
  29. Mayer G. Rigid biological systems as models for synthetic compos- ites. Science 2005;310:1144-7.
  30. Mayer G. New classes of tough composite materials -lessons from nature rigid biological systems. Mater Eng Sci C 2006;26:1261-8.
  31. Seki Y, Schneider MS, Meyers MA. Structure and mechanical properties of the toucan beak. Acta Mater 2005;53:5281-96.
  32. Seki Y, Kad B, Benson D, Meyers MA. The toucan beak: structure and mechanical response. Mater Sci Eng C 2006;26:1412-20.
  33. Altman GH et al. Silk-based biomaterials. Biomaterials 2003;24:401-16.
  34. Drach P. Mue et cycle d'intermue chez les crustace ´e ´decapods. Ann Inst Oceanogr 1939;19:103-391.
  35. Hegdahl T, Silness J, Gustavsen F. The structure and mineralization of the carapace of the crab (Cancer pagurus L) -1. The endocuticle. Zool Scr 1977;6:89-99.
  36. Roer RD. Mechanisms of resorption and deposition of calcium in the carapace of the crab Carcinus maenas. J Exp Biol 1980;88:205-18.
  37. Currey JD, Nash A, Bonfield W. Calcified cuticle in the stomatopod smashing limb. J Mater Sci 1982;17:1939-44.
  38. Hayes DK, Armstrong WD. The distribution of mineral material in the calcified carapace and claw shell of the American lobster, Homarus americanus, evaluated by means of microroentgenograms. Bio Bull 1961;121:307-15.