Academia.eduAcademia.edu

Outline

Classical and quantum initial conditions for Higgs inflation

2015, Physics Letters B

https://doi.org/10.1016/J.PHYSLETB.2015.09.020

Abstract

We investigate whether Higgs inflation can occur in the Standard Model starting from natural initial conditions or not. The Higgs has a non-minimal coupling to the Ricci scalar. We confine our attention to the regime where quantum Einstein gravity effects are small in order to have results that are independent of the ultraviolet completion of gravity. At the classical level we find no tuning is required to have a successful Higgs inflation, provided the initial homogeneity condition is satisfied. On the other hand, at the quantum level we obtain that the renormalization for large non-minimal coupling requires an additional degree of freedom that transforms Higgs inflation into Starobinsky R 2 inflation, unless a tuning of the initial values of the running parameters is made.

References (49)

  1. A. H. Guth, "The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems," Phys. Rev. D 23, 347 (1981).
  2. A. D. Linde, "A New Inflationary Universe Scenario: A Possible So- lution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems," Phys. Lett. B 108, 389 (1982).
  3. A. Albrecht and P. J. Steinhardt, "Cosmology for Grand Unified The- ories with Radiatively Induced Symmetry Breaking," Phys. Rev. Lett. 48, 1220 (1982).
  4. P. A. R. Ade et al. [Planck Collaboration], "Planck 2015 results. XIII. Cosmological parameters," arXiv:1502.01589. P. A. R. Ade et al. [Planck Collaboration], "Planck 2015 results. XX. Constraints on inflation," arXiv:1502.02114.
  5. V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, "Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions," Phys. Rept. 215, 203 (1992).
  6. A. Mazumdar and J. Rocher, "Particle physics models of inflation and curvaton scenarios," Phys. Rept. 497, 85 (2011) [arXiv:1001.0993].
  7. G. Aad et al. [ATLAS Collaboration], "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC," Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214].
  8. S. Chatrchyan et al. [CMS Collaboration], "Observation of a new bo- son at a mass of 125 GeV with the CMS experiment at the LHC," Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235].
  9. A. Chatterjee and A. Mazumdar, "Tuned MSSM Higgses as an infla- ton," JCAP 1109, 009 (2011) [arXiv:1103.5758].
  10. A. Chatterjee and A. Mazumdar, "Bound on largest r 0.1 from sub-Planckian excur- sions of inflaton," JCAP 1501, no. 01, 031 (2015) [arXiv:1409.4442].
  11. D. La and P. J. Steinhardt, "Extended Inflationary Cosmology," Phys. Rev. Lett. 62, 376 (1989) [Phys. Rev. Lett. 62, 1066 (1989)].
  12. F. L. Bezrukov and M. Shaposhnikov, "The Standard Model Higgs bo- son as the inflaton," Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755].
  13. C. P. Burgess, H. M. Lee and M. Trott, "Power-counting and the Validity of the Classical Approximation During Inflation," JHEP 0909 (2009) 103 [arXiv:0902.4465].
  14. J. L. F. Barbon and J. R. Es- pinosa, "On the Naturalness of Higgs Inflation," Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355].
  15. C. P. Burgess, H. M. Lee and M. Trott, "Comment on Higgs Inflation and Naturalness," JHEP 1007 (2010) 007 [arXiv:1002.2730].
  16. M. P. Hertzberg, "On Inflation with Non-minimal Coupling," JHEP 1011 (2010) 023 [arXiv:1002.2995].
  17. F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, "Higgs inflation: consistency and generalisations," JHEP 1101 (2011) 016 [arXiv:1008.5157].
  18. C. P. Burgess, S. P. Patil and M. Trott, "On the Pre- dictiveness of Single-Field Inflationary Models," JHEP 1406 (2014) 010 [arXiv:1402.1476].
  19. J. L. F. Barbon, J. A. Casas, J. Elias-Miro and J. R. Espinosa, "Higgs Inflation as a Mirage," arXiv:1501.02231.
  20. E. J. Copeland, A. R. Liddle and D. Wands, "Exponential potentials and cosmological scaling solutions," Phys. Rev. D 57, 4686 (1998) [arXiv:gr-qc/9711068].
  21. A. R. Liddle, A. Mazumdar and F. E. Schunck, "Assisted inflation," Phys. Rev. D 58 (1998) 061301 [arXiv:astro- ph/9804177].
  22. E. J. Copeland, A. Mazumdar and N. J. Nunes, "Gener- alized assisted inflation," Phys. Rev. D 60 (1999) 083506 [arXiv:astro- ph/9904309].
  23. L. Kofman, A. D. Linde and V. F. Mukhanov, "Inflationary the- ory and alternative cosmology," JHEP 0210 (2002) 057 [arXiv:hep- th/0206088].
  24. A. D. Linde, "Initial Conditions For Inflation," Phys. Lett. B 162 (1985) 281.
  25. D. S. Goldwirth, "Initial Conditions for New Inflation," Phys. Lett. B 243 (1990) 41. D. S. Goldwirth and T. Piran, "Inhomogeneity and the Onset of Inflation," Phys. Rev. Lett. 64, 2852 (1990). A. Albrecht, R. H. Brandenberger and R. Matzner, "Inflation With Generalized Initial Conditions," Phys. Rev. D 35, 429 (1987). H. Kurki-Suonio, R. A. Matzner, J. Centrella and J. R. Wilson, "Inflation From Inho- mogeneous Initial Data in a One-dimensional Back Reacting Cosmol- ogy," Phys. Rev. D 35, 435 (1987).
  26. A. A. Starobinsky, "A New Type of Isotropic Cosmological Models Without Singularity," Phys. Lett. B 91, 99 (1980).
  27. T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar, "Towards sin- gularity and ghost free theories of gravity," Phys. Rev. Lett. 108 (2012) 031101 [arXiv:1110.5249].
  28. S. Talaganis, T. Biswas and A. Mazumdar, "Towards understanding the ultraviolet behavior of quantum loops in infinite-derivative theories of gravity," arXiv:1412.3467.
  29. Y. Hamada, H. Kawai, K. y. Oda and S. C. Park, "Higgs Inflation is Still Alive after the Results from BICEP2," Phys. Rev. Lett. 112 (2014) 24, 241301 [arXiv:1403.5043]. F. Bezrukov and M. Shaposh- nikov, "Higgs inflation at the critical point," Phys. Lett. B 734 (2014) 249 [arXiv:1403.6078].
  30. F. Bezrukov, D. Gorbunov and M. Shaposhnikov, "On ini- tial conditions for the Hot Big Bang," JCAP 0906 (2009) 029 [arXiv:0812.3622]. J. Garcia-Bellido, D. G. Figueroa and J. Rubio, "Preheating in the Standard Model with the Higgs-Inflaton coupled to gravity," Phys. Rev. D 79 (2009) 063531 [arXiv:0812.4624].
  31. G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giu- dice, G. Isidori and A. Strumia, "Higgs mass and vacuum sta- bility in the Standard Model at NNLO," JHEP 1208 (2012) 098 [arXiv:1205.6497].
  32. D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio and A. Strumia, "Investigating the near-criticality of the Higgs boson," JHEP 1312 (2013) 089 [arXiv:1307.3536].
  33. G. F. Giudice, G. Isidori, A. Salvio and A. Strumia, "Softened Gravity and the Extension of the Standard Model up to Infinite Energy," JHEP 1502 (2015) 137 [arXiv:1412.2769].
  34. F. Bezrukov, M. Y. Kalmykov, B. A. Kniehl and M. Shaposhnikov, "Higgs Boson Mass and New Physics," JHEP 1210 (2012) 140 [arXiv:1205.2893].
  35. I.L. Buchbinder, D.D. Odintsov, I.L. Shapiro, "Effective Action in Quantum Gravity" (IOP, 1992). E. V. Gorbar, I. L. Shapiro, "Renor- malization group and decoupling in curved space. 2. The Standard model and beyond," JHEP 0306 (2003) 004 [arXiv:hep-ph/0303124].
  36. Y.Yoon, Y.Yoon, "Asymptotic conformal invariance of SU(2) and stan- dard models in curved space-time," Int. J. Mod. Phys. A12 (1997) 2903.
  37. A. Salvio and A. Strumia, "Agravity," JHEP 1406 (2014) 080 [arXiv:1403.4226].
  38. G. 't Hooft and M. J. G. Veltman, "One loop divergencies in the theory of gravitation," Annales Poincare Phys. Theor. A 20 (1974) 69.
  39. F. L. Bezrukov, A. Magnin and M. Shaposhnikov, "Standard Model Higgs boson mass from inflation," Phys. Lett. B 675 (2009) 88 [arXiv:0812.4950].
  40. F. Bezrukov and M. Shaposhnikov, "Standard Model Higgs boson mass from inflation: Two loop analysis," JHEP 0907 (2009) 089 [arXiv:0904.1537].
  41. A. Salvio, "Higgs Inflation at NNLO after the Boson Discovery," Phys. Lett. B 727 (2013) 234 [arXiv:1308.2244].
  42. P. A. R. Ade et al. [BICEP2 and Planck Collaborations], "Joint Anal- ysis of BICEP2 / Keck Array and Planck Data," Phys. Rev. Lett. 114 (2015) 10, 101301 [arXiv:1502.00612].
  43. P. A. R. Ade et al. [BICEP2 and Keck Array Collaborations], "BICEP2 / Keck Array V: Measure- ments of B-mode Polarization at Degree Angular Scales and 150 GHz by the Keck Array," arXiv:1502.00643. P. A. R. Ade et al. [Planck Collaboration], "Planck 2015 results. XX. Constraints on inflation," arXiv:1502.02114.
  44. K. Kannike, G. Htsi, L. Pizza, A. Racioppi, M. Raidal, A. Salvio and A. Strumia, "Dynamically Induced Planck Scale and Inflation," JHEP 1505 (2015) 065 [arXiv:1502.01334].
  45. A. Salvio, "On the Origin of Scales and Inflation," IFT-UAM/CSIC-15-033.
  46. A. Salvio, "A Simple Motivated Completion of the Standard Model below the Planck Scale: Axions and Right-Handed Neutrinos," Phys. Lett. B 743 (2015) 428 [arXiv:1501.03781]. J. Elias-Miro, J. R. Es- pinosa, G. F. Giudice, H. M. Lee and A. Strumia, "Stabilization of the Electroweak Vacuum by a Scalar Threshold Effect," JHEP 1206 (2012) 031 [arXiv:1203.0237].
  47. F. Loebbert and J. Plefka, "Quantum Gravitational Contributions to the Standard Model Effective Potential and Vacuum Stability," arXiv:1502.03093.
  48. M. Torabian, "When Higgs Meets Starobinsky in the Early Universe," arXiv:1410.1744.
  49. F. L. Bezrukov and D. S. Gorbunov, "Distinguishing between R 2 -inflation and Higgs-inflation," Phys. Lett. B 713 (2012) 365 [arXiv:1111.4397].