Academia.eduAcademia.edu

Outline

Basic Questions Related to Electron-Induced Sputtering

2009, Microscopy and Microanalysis

https://doi.org/10.1016/J.ULTRAMIC.2009.11.003

Abstract

Although the theory of high-angle elastic scattering of fast electrons is well developed, accurate calculation of the incident-energy threshold and cross section for surface-atom sputtering is hampered by uncertainties in the value of the surface-displacement energy E d and its angular dependence. We show that reasonable agreement with experiment is achieved by assuming a non-spherical escape potential with E d = (5/3) E sub , where E sub is the sublimation energy. Since field-emission sources and aberration-corrected TEM lenses have become more widespread, sputtering has begun to impose a practical limit to the spatial resolution of microanalysis for some specimens. Sputtering can be delayed by coating the specimen with a thin layer of carbon, or prevented by reducing the incident energy; 60 keV should be sufficiently low for most materials.

FAQs

sparkles

AI

What explains the difference in radiolysis mechanisms for organic vs inorganic specimens?add

The paper demonstrates that radiolysis is significant in organic and biological specimens due to efficient inelastic scattering mechanisms, while this effect is suppressed in conducting materials like metals, where knock-on displacement is the primary damage mechanism.

How does the displacement energy influence sputtering threshold in metallic solids?add

The study finds that using a displacement energy defined as E_d = (5/3)E_sub yields more accurate sputtering threshold estimates, particularly for metals subjected to high-dose conditions.

What factors contribute to the maximum energy transfer during elastic scattering?add

Elastic scattering energy transfer E_max increases with the incident electron energy E_0, but decreases as nuclear mass M increases, impacting damage in light vs heavy elements during electron-induced sputtering.

How do surface binding energies affect sputtering yield calculations?add

The research indicates a correlation where surface binding energy influences the sputtering yield, predicting values of yields roughly an order of 10^{-7} for a sputtering cross-section of 100 barn.

What control mechanisms can be used to mitigate electron-induced sputtering?add

The paper suggests that applying thin coatings like amorphous carbon can delay sputtering by providing a protective barrier, although to fully eliminate it, one must operate below the sputtering threshold energy.

References (31)

  1. L. Reimer, H. Kohl, in: Transmission Electron Microscopy: Physics of Image Formation, Springer Series in Optical Sciences, Berlin, 2008 Chapter 11.
  2. R.F. Egerton, P. Li, M. Malac, Micron 35 (2004) 399.
  3. F. Banhart, Rep. Prog. Phys. 62 (1999) 1181.
  4. C.R. Bradley, N.J. Zaluzec, Ultramicroscopy 28 (1989) 335.
  5. L.I. Maisel, R. Glang, in: Handbook of Thin Film Technology, McGraw-Hill, New York, 1970.
  6. J. Liu, C.-W. Wu, T.T. Tsong, Surf. Sci. 246 (1991) 157.
  7. C.R.Bradley, Calculations of atomic sputtering and displacement cross- sections in solid elements by electrons with energies from threshold to 1.5 MV. Argonne National Laboratory Report ANL-88-48, 1988.
  8. B.W. Smith, D.E. Luzzi, J. Appl. Phys. 90 (2001) 3509.
  9. D. Cherns, M.W. Finnis, M.D. Matthews, Phil. Mag. 35 (1977) 693.
  10. D. Cherns, Surf. Sci. 90 (1979) 339.
  11. R.F. Egerton, F. Wang, P.A. Crozier, Beam-induced damage to thin specimens in an intense electron probe, Microsc. Microanalysis 12 (2006) 65.
  12. F. Gao, D.J. Bacon, W.S. Lai, R.J. Kurtz, Phil. Mag. 86 (2006) 4243.
  13. N. Braidy, Z.J. Jakubek, B. Simard, G.A. Botton, Microsc. Microanalysis 14 (2008) 166.
  14. W.A. McKinley, H. Feshbach, Phys. Rev. 74 (1948) 1759.
  15. Y. Kiudriavtsev, A. Villegas, A. Godines, R. Asomoza, Appl. Surf. Sci. 239 (2005) 273.
  16. O.S. Oen Cross sections for atomic displacements in solids by fast electrons. Oak Ridge National Laboratory report ORNL-4897, 1973.
  17. P. Sigmund, Phys. Rev. 184 (1969) 383.
  18. V.H. Crespi, N.G. Chopra, M.L. Cohen, A. Zettl, S.G. Louie, Phys. Rev. B 54 (1996) 5927.
  19. A. Zobelli, A. Gloter, C.P. Ewels, G. Seifert, C. Colliex, Phys. Rev. B 75 (2007) 245402.
  20. D.L. Medlin, D.G. Howitt, Phil. Mag. 64 (1991) 133.
  21. T.J. Bullough, Phil. Mag. 75 (1997).
  22. D.L. Medlin, L.E. Thomas, D.G. Howitt, Ultramicroscopy 29 (1989) 228.
  23. D.A. Muller, J. Silcox, Phil. Mag. 71 (1995) 1375.
  24. B.B. Tang, I.P. Jones, W.S. Lai, D.J. Bacon, Phil. Mag. 85 (2005) 1805.
  25. J.F. Mansfield, P.R. Okamoto, L.E. Rehn, N.J. Zaluzec, Ultramicroscopy 21 (1978) 13.
  26. K.A. Mkhoyan, J. Silcox, Appl. Phys. Lett. 82 (2003) 859.
  27. D.G. Howitt, S.J. Chen, B.C. Gierhart, R.L. Smith, S.D. Collins, J. Appl. Phys. 103 (2008) 024310.
  28. J.S. Wall. Scanning Electron Microscopy/1980/I, in: O. Johari (Ed.), SEM Inc. Chicago, p. 99.
  29. O.L. Krivanek, N. Dellby, R.J. Keyse, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, in: P.W. Hawkes (Ed.), Advances in Imaging and Electron Physics, Elsevier, Amsterdam, 2008.
  30. D. Cherns, F.J. Minter, R.S. Nelson, Nucl. Instrum. Methods 132 (1976) 369.
  31. Y. Ma, L.D. Marks, in: G.W. Bailey (Ed.), Proc. 44th Ann. Meet. Electron Microsc. Soc. Am., San Francisco Press, San Francisco, 1986.