Primitive groups synchronize non-uniform maps of extreme ranks
2014, Journal of Combinatorial Theory, Series B
Abstract
Let Ω be a
References (22)
- J. Araújo. Normal semigroups of endomorphisms of proper independence algebras are idempotent generated. Proc. Edinburgh Math. Soc. 45 (2) (2002), 205-217.
- J. Araújo. Generators for the semigroup of endomorphisms of an inde- pendence algebra. Algebra Colloq. 9 (4) (2002), 375-282.
- J. Araújo. Idempotent generated endomorphisms of an independence algebra. Semigroup Forum 67 (3) (2003), 464-467.
- J. Araújo, W. Bentz and P.J. Cameron, Groups Synchronizing a Trans- formation of Non-Uniform Kernel. \protect\vrule width0pt\protect\href{http://arxiv.org/abs/1205.0682}{http://arx
- J. Araújo, M. Edmundo and S. Givant. v * -Algebras, Independence Al- gebras and Logic. International Journal of Algebra and Computation 21 (7) (2011), 1237-1257.
- J. Araújo and J. Fountain. The Origins of Independence Algebras Pro- ceedings of the Workshop on Semigroups and Languages (Lisbon 2002), World Scientific, (2004), 54-67
- J. Araújo and J.D. Mitchell. Relative ranks in the monoid of endomor- phisms of an independence algebra. Monatsh. Math. 151 (1) (2007), 1-10.
- F. Arnold and B. Steinberg, Synchronizing groups and automata. The- oret. Comput. Sci. 359 (2006), no. 1-3, 101-110.
- J. Bamberg, N. Gill, T.P. Hayes, H.A. Helfgott, A. Seress and P. Spiga, Bounds on the diameter of cayley graphs of the symmetric group. \protect\vrule width0pt\protect\href{http://arxiv.org/pdf/1205.1596.pdf}{http:/
- P. J. Cameron and A. Kazanidis, Cores of symmetric graphs. J. Aus- tralian Math. Soc. 85 (2008), 145-154.
- P. J. Cameron and C. Szabó, Independence algebras, J. London Math. Soc., 61 (2000), 321-334.
- J. D. Dixon and B. Mortimer, Permutation Groups, Graduate Texts in Mathematics 163, Springer, New York, 1996.
- J. Fountain and A. Lewin. Products of idempotent endomorphisms of an independence algebra of finite rank. Proc. Edinburgh Math. Soc. 35 (2) (1992), 493-500.
- J. Fountain and A. Lewin. Products of idempotent endomorphisms of an independence algebra of infinite rank. Math. Proc. Cambridge Philos. Soc. 114 (2) (1993), 303-319.
- V. Gould, Independence algebras. Algebra Universalis 33 (1995), 294- 318.
- H.A. Helfgott and A. Seress, On the diameter of permutation groups, (to appear on the Annals of Math.) \protect\vrule width0pt\protect\href{http://arxiv.org/abs/1109.3550}{http://arx
- I. Levi, R. McFadden, D. McAlister, Groups Associated with Finite Transformation Semigroups. Semigroup Forum 61 (2000), 453-467.
- P. M. Neumann, Primitive permutation groups and their section-regular partitions. Michigan Math. J. 58 (2009), 309-322.
- J.-E. Pin, Černý's conjecture. \protect\vrule width0pt\protect\href{http://www.liafa.jussieu.fr/\string~jep/Pr
- I. Rystsov, Quasioptimal bound for the length of reset words for regular automata. Acta Cybernet. 12 (1995), no. 2, 145-152.
- A.N. Trahtman, Bibliography, synchronization TESTAS \protect\vrule width0pt\protect\href{http://www.cs.biu.ac.il/\string~trakht/syn
- A.N. Trahtman, The Černý Conjecture for Aperiodic Automata, Discr. Math. & Theoret. Comput. Sci. 9(2007), (2) 3-10.