Academia.eduAcademia.edu

Outline

Primitive groups synchronize non-uniform maps of extreme ranks

2014, Journal of Combinatorial Theory, Series B

Abstract

Let Ω be a

References (22)

  1. J. Araújo. Normal semigroups of endomorphisms of proper independence algebras are idempotent generated. Proc. Edinburgh Math. Soc. 45 (2) (2002), 205-217.
  2. J. Araújo. Generators for the semigroup of endomorphisms of an inde- pendence algebra. Algebra Colloq. 9 (4) (2002), 375-282.
  3. J. Araújo. Idempotent generated endomorphisms of an independence algebra. Semigroup Forum 67 (3) (2003), 464-467.
  4. J. Araújo, W. Bentz and P.J. Cameron, Groups Synchronizing a Trans- formation of Non-Uniform Kernel. \protect\vrule width0pt\protect\href{http://arxiv.org/abs/1205.0682}{http://arx
  5. J. Araújo, M. Edmundo and S. Givant. v * -Algebras, Independence Al- gebras and Logic. International Journal of Algebra and Computation 21 (7) (2011), 1237-1257.
  6. J. Araújo and J. Fountain. The Origins of Independence Algebras Pro- ceedings of the Workshop on Semigroups and Languages (Lisbon 2002), World Scientific, (2004), 54-67
  7. J. Araújo and J.D. Mitchell. Relative ranks in the monoid of endomor- phisms of an independence algebra. Monatsh. Math. 151 (1) (2007), 1-10.
  8. F. Arnold and B. Steinberg, Synchronizing groups and automata. The- oret. Comput. Sci. 359 (2006), no. 1-3, 101-110.
  9. J. Bamberg, N. Gill, T.P. Hayes, H.A. Helfgott, A. Seress and P. Spiga, Bounds on the diameter of cayley graphs of the symmetric group. \protect\vrule width0pt\protect\href{http://arxiv.org/pdf/1205.1596.pdf}{http:/
  10. P. J. Cameron and A. Kazanidis, Cores of symmetric graphs. J. Aus- tralian Math. Soc. 85 (2008), 145-154.
  11. P. J. Cameron and C. Szabó, Independence algebras, J. London Math. Soc., 61 (2000), 321-334.
  12. J. D. Dixon and B. Mortimer, Permutation Groups, Graduate Texts in Mathematics 163, Springer, New York, 1996.
  13. J. Fountain and A. Lewin. Products of idempotent endomorphisms of an independence algebra of finite rank. Proc. Edinburgh Math. Soc. 35 (2) (1992), 493-500.
  14. J. Fountain and A. Lewin. Products of idempotent endomorphisms of an independence algebra of infinite rank. Math. Proc. Cambridge Philos. Soc. 114 (2) (1993), 303-319.
  15. V. Gould, Independence algebras. Algebra Universalis 33 (1995), 294- 318.
  16. H.A. Helfgott and A. Seress, On the diameter of permutation groups, (to appear on the Annals of Math.) \protect\vrule width0pt\protect\href{http://arxiv.org/abs/1109.3550}{http://arx
  17. I. Levi, R. McFadden, D. McAlister, Groups Associated with Finite Transformation Semigroups. Semigroup Forum 61 (2000), 453-467.
  18. P. M. Neumann, Primitive permutation groups and their section-regular partitions. Michigan Math. J. 58 (2009), 309-322.
  19. J.-E. Pin, Černý's conjecture. \protect\vrule width0pt\protect\href{http://www.liafa.jussieu.fr/\string~jep/Pr
  20. I. Rystsov, Quasioptimal bound for the length of reset words for regular automata. Acta Cybernet. 12 (1995), no. 2, 145-152.
  21. A.N. Trahtman, Bibliography, synchronization TESTAS \protect\vrule width0pt\protect\href{http://www.cs.biu.ac.il/\string~trakht/syn
  22. A.N. Trahtman, The Černý Conjecture for Aperiodic Automata, Discr. Math. & Theoret. Comput. Sci. 9(2007), (2) 3-10.