Abstract
A numerical code for the prediction of the settlement of pile groups and piled rafts is presented. The code is based on the interaction factors method; the non-linearity is simulated as suggested by Caputo and Viggiani, that is, concentrating it at the pile±soil interface. In the linear range, the accuracy is checked against known benchmark solutions. A standard procedure, based on the results of load tests on single piles, is suggested for the evaluation of soil properties and for the implementation of the analysis in real cases. Nineteen well-documented case histories are then analysed, calculating for each of them a linear elastic, an equivalent linear elastic and a non-linear solution. Five out of the 19 cases are illustrated in some detail, to allow a deeper insight into the procedure. In all but one of the analysed cases the predicted values of the average settlement are within AE20% of the observed values. The maximum differential settlement is predicted with slightly lesser accuracy. For foundations characterized by a relatively high safety factor, linear and non-linear analyses are essentially equivalent. Some evidence suggests that the low-strain shear modulus, obtained by in situ shear wave velocity measurements, can be successfully employed in the prediction of the settlement. When the safety factor is low, the consideration of nonlinearity becomes mandatory.
References (54)
- Banerjee, P. K. (1970). A contribution to the study of axially loaded pile foundations. PhD thesis, University of Southampton.
- Banerjee, P. K. & Butter®eld, R. (1981). Boundary element method in engineering science. McGraw-HIll.
- Banerjee, P. K. & Driscoll, R. M. (1978). Program for the analysis of pile groups of any geometry subjected to horizontal and vertical loads and moments, PGROUP (2.1). Department of Transport, London, HECBaBa7.
- Bilotta, E., Caputo, V. & Viggiani, C. (1991). Analysis of soil±structure interaction for piled rafts. Proc. 10th ECSMFE, Florence, Vol. 1, pp. 315±318.
- Briaud, J. L., Tucker, L. M. & Ng, E. (1989). Axially loaded 5 pile group and single pile in sand. Proc. 12th ICSMFE, Rio de Janeiro, Vol. 2, pp. 1121±1124.
- Burland, J. B. & Kalra, J. C. (1986). Queen Elizabeth II Conference Centre: geotechnical aspects. Proc. Instn. Civ. Engrs 80, 1479±1505.
- Burland, J. B., Broms, B. B. & De Mello, V. F. B. (1977). Behaviour of foundation and structures. Proc. 9th ICSMFE, Tokyo, Vol. 2, pp. 495±546.
- Butter®eld, R. & Banerjee, P. K. (1971). The problem of pile group±pile cap interaction. Ge Âotechnique 21, No. 2, 135±142.
- Butter®eld, R. & Douglas, R. A. (1981). Flexibility coef®cients for the design of piles and pile groups. CIRIA Technical Note 108, London.
- Caputo, V. (1991). Equivalent elastic analysis of settle- ment for piled foundations. Proc. 10th ECSMFE, Florence, Vol. 4, pp. 1346±1348.
- Caputo, V. & Viggiani, C. (1984). Pile foundation analysis: a simple approach to non linearity effects. Rivista Italiana di Geotecnica 18, No. 2, 32±51.
- Caputo, V., Mandolini, A. & Viggiani, C. (1991). Settlement of a piled foundation in pyroclastic soils. Proc. 10th ECSMFE, Florence, Vol. 1, pp. 353±358.
- Chin, F. K. (1970). Estimation of the ultimate load of piles from tests not carried to failure. Proc. 2nd SEACSE, Singapore, pp. 81±92.
- Chin, F. K. (1972). The inverse slope as a prediction of ultimate bearing capacity of piles. Proc. 3rd SEACSE, Hong Kong, pp. 83±91.
- Chow, Y. K. (1986). Analysis of vertically loaded pile groups. Int. J. Num. Anal. Meth. in Geomech. 10, No. 1, 59±72.
- Clancy, P. & Randolph, M. F. (1992). Analysis and design of piled raft foundations. Research report G1062, University of Western Australia, Perth.
- Cooke, R. W., Price, G. & Tarr, K. W. (1980). Jacked piles in London clay: interaction and group behaviour under working conditions. Ge Âotechnique 30, No. 2, 449±471.
- Cooke, R. W., Bryden Smith, D. W., Gooch, M. N. & Sillet, D. F. (1981). Some observations on the foundation loading and settlement of a multi-storey building on a piled raft foundation in London clay. Proc. Instn Civ. Engrs 107, Part I, 433±460.
- Croce, A. (1948). Secondary time effect in the compres- sion of unconsolidated sediments of volcanic origin. Proc. 2nd ICSMFE, Rotterdam, Vol. 1, pp. 166±169.
- Fleming, W. G. K., Weltman, A. J., Randolph, M. F. & Elson, W. K. (1992). Piling engineering, 2nd edition. Surrey University Press.
- Fraser, R. A. & Wardle, L. J. (1976). Numerical analysis of rectangular rafts on layered foundations. Ge Âotech- nique 26, No. 4, 613±630.
- Goossens, D. & Van Impe, W. F. (1991). Long term settlements of a pile group foundation in sand, overlying a clay layer. Proc. 10th ECSMFE, Florence, Vol. 1, pp. 425±428.
- Grif®ths, D. V., Clancy, P. & Randolph, M. F. (1991). Piled raft foundation analysis by ®nite elements. Proc. 7th Int. Conf. on Computer Methods and Advances in Geomechanics, Cairns, Vol. 2, pp. 1153±1157.
- Kaino, T. & Aoki, H. (1985). Vertical load test of cast-in- place concrete pile groups (1st report). Report of Structural Design Of®ce of JNR, No. 84, pp. 19±23. (In Japanese.)
- Koerner, R. M. & Partos, A. (1974). Settlement of building on pile foundation in sand. J. Soil Mech. Fdns Div., ASCE 85, No. SM6, 1±29.
- Koizumi, Y. & Ito, K. (1967). Field tests with regard to pile driving and bearing capacity of piled foundations. Soils Fdns 7, No. 3, 30±53.
- Lambe, T. W. (1973). Prediction in soil engineering. Ge Âotechnique 23, No. 2, 149±202.
- Mancuso, C. & Mandolini, A. (1993). Ulteriori indagini sulla battitura di pali in argilla. Gruppos Nazionale di Coordinamento per gli Studi di Ingegneria Geo- tecnica, CNR. Attivita Á di Ricerca 1992a93, Roma, pp. 275±278.
- Mandolini, A. (1994a). Modelling settlement behaviour of piled foundations. Pile foundationsÐExperimental investigations, analysis and design, pp. 361±406. Naples: Cuen.
- Mandolini, A. (1994b). Cedimenti di fondazioni su pali. PhD thesis, University of Naples `Federico II'.
- Mandolini, A. & Viggiani, C. (1992a) Terreni ed opere di fondazione di un viadotto sul ®ume Garigliano. Rivista Italiana di Geotecnica 26, No. 2, 95±113.
- Mandolini, A. & Viggiani, C. (1992b). Settlement pre- diction for piled foundations from loading tests on single pile. Proc. Wroth Mem. Symp. on Predictive Soil Mechanics, Oxford, pp. 464±482.
- Mindlin, R. D. (1936). Force at a point in the interior of a semi-in®nite solid. Physics 7, 195±202.
- Morgan, J. R. & Poulos, H. G. (1968). Stability and settlement of deep foundations. In Soil mechanics selected topics (ed. I. K. Lee), pp. 528±609. New York: Elsevier.
- O'Neill, M. W., Ghazzaly, O. I. & Ha, H. A. (1977). Analysis of three dimensional pile groups with non linear soil response and pile±soil±pile interaction. Proc. 9th Ann. Offshore Technology Conf., Houston, pp. 245±256.
- Poulos, H. G. (1968). Analysis of settlement of pile groups. Ge Âotechnique 18, No. 3, 449±471.
- Poulos, H. G. (1990). DEFPIGÐDeformation analysis of pile groups, User's guide. Centre for Geotechnical Research, University of Sydney.
- Poulos, H. G. (1993). Settlement prediction for bored pile groups. Proc. BAP II, Ghent, pp. 103±117.
- Poulos, H. G. & Davis, E. H. (1980). Pile foundation analysis and design. New York: Wiley.
- Poulos, H. G. & Hewitt, C. M. (1985). Axial interaction between dissimilar piles in a group. School of Civil and Mining Engineering, University of Sydney, Research report No. R512.
- Rampello, S. (1994). Soil stiffness relevant to settlement prediction of the piled foundations at Pietra®tta. Pile foundationsÐExperimental investigations, analysis and design, pp. 407±416. Naples: Cuen.
- Randolph, M. F. (1987). PIGLET; a computer program for the analysis and design of pile groups. University of Western Australia, Perth, Report Geo 87036.
- Randolph, M. F. (1994). Design methods for pile groups and piled rafts. Proc. 13th ICSMFE, New Delhi, vol. 5, pp. 61±82.
- Randolph, M. F. & Clancy, P. (1994). Design and performance of a piled foundation. In ASCE Geo- technical Special Publication No. 40, Vertical and horizontal deformations of foundations and embank- ments, pp. 314±324. College Station, Texas.
- Randolph, M. F. & Wroth, C. P. (1978). Analysis of deformations of vertically loaded piles. J. Geotech. Engng Div., ASCE 104, No. GT12, 1465±1488.
- Randolph, M. F. & Wroth, C. P. (1979). An analysis of the vertical deformations of pile groups. Ge Âotechnique 29, No. 4, 423±439.
- Russo, G. (1994). Monitoring the behaviour of a pile foundation. Pile foundationsÐExperimental investiga- tions, analysis and design, pp. 435±441. Naples: Cuen.
- Sommer, H., Tamaro, G. & De Benedittis, G. (1991). Messe Turm: foundations for the tallest building in Europe. Proc. 4th Int. Conf. on Piling and Deep Foundations, Stresa, Vol. 1, pp. 139±145.
- Thorburn, S., Laird, C. & Randolph, M. F. (1983). Storage tanks founded on soft soils reinforced with driven piles. Proc. Conf. on Recent Advances in Piling and Ground Treatment, Instn Civ. Engrs, London, pp. 157±164.
- Tro®menkov, J. (1977). Panel contribution, Session 2, Behaviour of foundation and structures. Proc. 9th ICSMFE, Tokyo, Vol. 3, pp. 370±371.
- Viggiani, C. (1989). Terreni ed opere di fondazione della Cittadella Postale nel Centro Direzionale di Napoli. Rivista Italiana di Geotecnica 23, No. 3, 121±145.
- Viggiani, C. & Vinale, F. (1983). Comportamento di pali trivellati di grande diametro in terreni piroclastici. Rivista Italiana di Geotecnica 17, No. 2, 59±84.
- Vinale, F. (1988). Caratterizzazione del sottosuolo di un'area campione di Napoli ai ®ni di una micro- zonazione sismica. Rivista Italiana di Geotecnica 22, No. 2, 77±100.
- Wood, L. A. (1978). A note on the settlement of piled structures. Ground Engng, No. 5, 38±42.
A. Mandolini
























