Academia.eduAcademia.edu

Outline

On integrable backgrounds self-dual under fermionic T-duality

2009, Journal of High Energy Physics

https://doi.org/10.1088/1126-6708/2009/04/120

Abstract

We study the fermionic T-duality symmetry of integrable Green-Schwarz sigma-models on AdS backgrounds with Ramond-Ramond fluxes in various dimensions. We show that sigma-models based on supercosets of PSU supergroups, such as AdS 2 × S 2 and AdS 3 × S 3 are self-dual under fermionic T-duality, while supercosets of OSp supergroups such as non-critical AdS 2 and AdS 4 models, and the critical AdS 4 × CP 3 background are not. We present a general algebraic argument to when a supercoset is expected to have a fermionic T-duality symmetry, and when it will fail to have one.

References (22)

  1. L. F. Alday and J. M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064, [0705.0303].
  2. J. M. Drummond, J. Henn, V. A. Smirnov, and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064, [hep-th/0607160].
  3. J. M. Drummond, G. P. Korchemsky, and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B795 (2008) 385-408, [0707.0243].
  4. N. Berkovits and J. Maldacena, Fermionic T-Duality, Dual Superconformal Symmetry, and the Amplitude/Wilson Loop Connection, JHEP 09 (2008) 062, [0807.3196].
  5. N. Beisert, R. Ricci, A. A. Tseytlin, and M. Wolf, Dual Superconformal Symmetry from AdS5 x S5 Superstring Integrability, 0807.3228.
  6. I. Bena, J. Polchinski, and R. Roiban, Hidden symmetries of the AdS(5) x S**5 superstring, Phys. Rev. D69 (2004) 046002, [hep-th/0305116].
  7. I. Adam, A. Dekel, L. Mazzucato, and Y. Oz, Integrability of type II superstrings on Ramond-Ramond backgrounds in various dimensions, JHEP 06 (2007) 085, [hep-th/0702083].
  8. J.-G. Zhou, Super 0-brane and GS superstring actions on AdS(2) x S(2), Nucl. Phys. B559 (1999) 92-102, [hep-th/9906013].
  9. J. Park and S.-J. Rey, Green-Schwarz superstring on AdS(3) x S(3), JHEP 01 (1999) 001, [hep-th/9812062].
  10. J. Rahmfeld and A. Rajaraman, The GS string action on AdS(3) x S(3) with Ramond-Ramond charge, Phys. Rev. D60 (1999) 064014, [hep-th/9809164].
  11. G. Arutyunov and S. Frolov, Superstrings on AdS 4 xCP 3 as a Coset Sigma-model, JHEP 09 (2008) 129, [0806.4940].
  12. j. Stefanski, B., Green-Schwarz action for Type IIA strings on AdS 4 × CP 3 , Nucl. Phys. B808 (2009) 80-87, [0806.4948].
  13. P. Fre and P. A. Grassi, Pure Spinor Formalism for Osp(N-4) backgrounds, 0807.0044.
  14. G. Bonelli, P. A. Grassi, and H. Safaai, Exploring Pure Spinor String Theory on AdS 4 × CP 3 , JHEP 10 (2008) 085, [0808.1051].
  15. R. D'Auria, P. Fre, P. A. Grassi, and M. Trigiante, Superstrings on AdS 4 xCP 3 from Supergravity, 0808.1282.
  16. T. H. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett. B194 (1987) 59.
  17. T. H. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear Sigma Models, Phys. Lett. B201 (1988) 466.
  18. N. Berkovits, M. Bershadsky, T. Hauer, S. Zhukov, and B. Zwiebach, Superstring theory on AdS(2) x S(2) as a coset supermanifold, Nucl. Phys. B567 (2000) 61-86, [hep-th/9907200].
  19. O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091, [0806.1218].
  20. J. Gomis, D. Sorokin, and L. Wulff, The complete AdS(4) x CP(3) superspace for the type IIA superstring and D-branes, 0811.1566.
  21. L. Frappat, P. Sorba, and A. Sciarrino, Dictionary on Lie superalgebras, hep-th/9607161.
  22. V. G. Kac, A Sketch of Lie Superalgebra Theory, Commun. Math. Phys. 53 (1977) 31-64.