Academia.eduAcademia.edu

Outline

Classical sphaleron rate on fine lattices

2000, Physical Review D

https://doi.org/10.1103/PHYSREVD.61.105008

Abstract

We measure the sphaleron rate for hot, classical Yang-Mills theory on the lattice, in order to study its dependence on lattice spacing. By using a topological definition of Chern-Simons number and going to extremely fine lattices (up to β = 32, or lattice spacing a = 1/(8g 2 T )) we demonstrate nontrivial scaling. The topological susceptibility, converted to physical units, falls with lattice spacing on fine lattices in a way which is consistent with linear dependence on a (the Arnold-Son-Yaffe scaling relation) and strongly disfavors a nonzero continuum limit. We also explain some unusual behavior of the rate in small volumes, reported by Ambjørn and Krasnitz.

References (35)

  1. G. t'Hooft, Phys. Rev. Lett. 37,8 (1976).
  2. P. Arnold and L. McLerran, Phys. Rev. D 36, 581 (1987).
  3. S. Khlebnikov and M. Shaposhnikov, Nucl. Phys. B308, 885 (1988).
  4. E. Mottola and S. Raby, Phys. Rev. D 42, 4202 (1990).
  5. V. Rubakov and M. Shaposhnikov, Phys. Usp. 39, 461 (1996) [Usp. Fiz. Nauk 166, 493 (1996)].
  6. D. Grigoriev and V. Rubakov, Nucl. Phys. B 299, 248 (1988).
  7. P. Arnold, D. Son, and L. Yaffe, Phys. Rev. D 55, 6264 (1997).
  8. P. Arnold, Phys. Rev. D 55, 7781 (1997).
  9. D. Bödeker, Phys. Lett. B 426, 351 (1998).
  10. G. D. Moore, C. Hu, and B. Müller, Phys. Rev. D 58, 045001 (1998).
  11. J. Ambjørn and A. Krasnitz, Phys. Lett. B 362, 97 (1995).
  12. G. D. Moore and N. Turok, Phys. Rev. D 56, 6533 (1997).
  13. J. Ambjørn and A. Krasnitz, Nucl. Phys. B 506, 387 (1997).
  14. K. Kajantie, K. Rummukainen, and M. Shaposhnikov, Nucl. Phys. B 407 (1993) 356.
  15. K. Farakos, K. Kajantie, K. Rummukainen, and M. Shaposhnikov, Nucl. Phys. B 425, 67 (1994).
  16. K. Kajantie, M. Laine, K. Rummukainen, and M. Shaposhnikov, Nucl. Phys. B 458, 90 (1996).
  17. E. Braaten and R. Pisarski, Nucl. Phys. B337, 569 (1990);
  18. J. Frenkel and J. Taylor, Nucl. Phys. B334, 199 (1990);
  19. J. Taylor and S. Wong, Nucl. Phys. B346, 115 (1990).
  20. D. Bödeker, NBI-HE-99-04, hep-ph/9903478; NBI-HE-99-13, hep-ph/9905239.
  21. G. D. Moore, MCGILL/98-28, hep-ph/9810313.
  22. K. Kajantie, M. Laine, J. Peisa, A. Rajantie, K. Rummukainen and M. Shaposhnikov, Phys. Rev. Lett. 79 3130 (1997);
  23. M. Laine and O. Philipsen, Nucl. Phys. B 523, 267 (1998);
  24. J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
  25. J. Ambjørn, T. Askgaard, H. Porter, and M. Shaposhnikov, Nucl. Phys. B 353, 346 (1991).
  26. G. D. Moore, Nucl. Phys. B 493, 439 (1997);
  27. Nucl. Phys. B 523, 569 (1998).
  28. G. D. Moore, Nucl. Phys. B 480, 657 (1996);
  29. Nucl. Phys. B 480, 689 (1996).
  30. W. Tang and J. Smit, Nucl. Phys. B 482, 265 (1996).
  31. G. D. Moore and N. Turok, Phys. Rev. D 55, 6538 (1997).
  32. M. Lüscher, Comm. Math. Phys. 85, 39 (1982).
  33. P. Woit, Phys. Rev. Lett. 51, 638 (1983); Nucl. Phys. B 262, 284 (1985).
  34. A. Phillips and D. Stone, Comm. Math. Phys. 103, 599 (1986).
  35. G. D. Moore, Phys.Rev. D59,014503 (1999), hep-ph/9805264.