Link Prediction in Online Social Networks Using Group Information
2014, Lecture Notes in Computer Science
https://doi.org/10.1007/978-3-319-09153-2_3Abstract
Users of online social networks voluntarily participate in different user groups or communities. Researches suggest the presence of strong local community structure in these social networks, i.e., users tend to meet other people via mutual friendship. Recently, different approaches have considered communities structure information for increasing the link prediction accuracy. Nevertheless, these approaches consider that users belong to just one community. In this paper, we propose three measures for the link prediction task which take into account all different communities that users belong to. We perform experiments for both unsupervised and supervised link prediction strategies. The evaluation method considers the links imbalance problem. Results show that our proposals outperform state-of-the-art unsupervised link prediction measures and help to improve the link prediction task approached as a supervised strategy.
References (19)
- Benchettara, N., Kanawati, R., Rouveirol, C.: A supervised machine learning link prediction approach for academic collaboration recommendation. In: RecSys 2010, pp. 253-256 (2010)
- Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. Comput. Netw. 33(1-6), 309-320 (2000)
- Demsar, J.: Statistical comparisons of classifiers over multiple data sets. JMLR 7, 1-30 (2006)
- Fatourechi, M., Ward, R.K., Mason, S.G., Huggins, J., Schlogl, A., Birch, G.E.: Comparison of evaluation metrics in classification applications with imbalanced datasets. In: ICMLA 2008, pp. 777-782 (2008)
- Al Hasan, M., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learn- ing. In: SDM 2006 Workshop on Link Analysis, Counterterrorism and Security (2006)
- Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer (2009)
- Hoseini, E., Hashemi, S., Hamzeh, A.: Link prediction in social network using co- clustering based approach. In: WAINA 2012, pp. 795-800. IEEE (2012)
- Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. JASIST 58(7), 1019-1031 (2007)
- Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: ACM SIGKDD KDD 2010, pp. 243-252. ACM (2010)
- Lü, L., Zhou, T.: Link prediction in complex networks: A survey. Physica A: Sta- tistical Mechanics and its Applications 390(6), 1150-1170 (2011)
- Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Mea- surement and analysis of online social networks. In: ACM SIGCOMM IMC 2007, pp. 29-42. ACM (2007)
- Soundarajan, S., Hopcroft, J.: Using community information to improve the pre- cision of link prediction methods. In: WWW 2012, pp. 607-608. ACM (2012)
- Valverde-Rebaza, J., de Andrade Lopes, A.: Link prediction in complex networks based on cluster information. In: Barros, L.N., Finger, M., Pozo, A.T., Gimenénez- Lugo, G.A., Castilho, M. (eds.) SBIA 2012. LNCS (LNAI), vol. 7589, pp. 92-101.
- Springer, Heidelberg (2012)
- Valverde-Rebaza, J., de Andrade Lopes, A.: Structural Link Prediction Using Com- munity Information on Twitter. In: CASoN 2012, pp. 132-137. IEEE (2012)
- Valverde-Rebaza, J., de Andrade Lopes, A.: Exploiting behaviors of communities of Twitter users for link prediction. Social Network Analysis and Mining 3(4), 1063-1074 (2013)
- Yin, D., Hong, L., Davison, B.D.: Structural link analysis and prediction in mi- croblogs. In: CIKM 2011, pp. 1163-1168 (2011)
- Zhang, Q.-M., Lü, L., Wang, W.-Q., Zhu, Y.-X., Zhou, T.: Potential theory for directed networks. PLoS ONE 8(2), e55437 (2013)
- Zheleva, E., Getoor, L., Golbeck, J., Kuter, U.: Using friendship ties and family cir- cles for link prediction. In: Giles, L., Smith, M., Yen, J., Zhang, H. (eds.) SNAKDD 2008. LNCS, vol. 5498, pp. 97-113. Springer, Heidelberg (2010)