Academia.eduAcademia.edu

Outline

Business process mining: from theory to practice

2012, … Process Management Journal

https://doi.org/10.1108/14637151211232669

Abstract

Purpose -This paper presents a comparison of a number of business process mining tools currently available in the UK market. An outline of the practice of business process mining is given along with an analysis of the main techniques developed by academia and commercial entities. This paper also acts as a primer for the acceptance and further use of process mining in industry suggesting future directions for this practice.

Key takeaways
sparkles

AI

  1. This paper compares business process mining tools, marking a shift from theory to practical industry application.
  2. Business process mining encompasses various techniques including Process Discovery, Conformance Checking, and Extension.
  3. Three perspectives—process, organizational, and case—are critical for effective business process mining analysis.
  4. Noise in event logs remains the biggest challenge, affecting approximately 40% of the tools evaluated.
  5. The paper suggests future research into integrating business process mining tools with cloud-based services.

References (60)

  1. Agrawal, R., Gunopulos, D. and Leymann, F. (1998), "Mining process models from workflow logs", in Schek, H. J. (Ed.), Proceedings of the 6th International Conference on Extending Database Technology: Advances in Database Technology, Springer Verlag, Heidelberg, pp 469-490.
  2. Alves de Medeiros, A. K., van Dongen, B. F., van der Aalst, W. M. P. and Weijters, A. J. M. M. (2004), "Process mining: Extending the a-algorithm to mine short loops", BETA Working Paper Series, WP 113, Eindhoven University of Technology, Eindhoven.
  3. Alves de Medeiros, A. K., Weijters, A.J.M.M. and van der Aalst, W. M. P. (2005). "Genetic process mining: A basic approach and its challenges" In: Business Process Management Workshops (BPM), Nancy, France, September 5, 2005.
  4. Alves de Medeiros, A. K., Guzzo, A., Greco, G., van der Aalst, W. M. P., Weijters, A. J. M. M., van Dongen, B. F. and Sacca, D. (2007), "Process mining based on Clustering: A quest for precision", in: Business Process Management Workshops 2007, Brisbane, Australia, 25th-28th September 2007.
  5. Burratin, A. and Sperduti, A. (2010a), "Heuristics miner for time intervals", European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 28-30 April.
  6. Burratin, A. and Sperduti, A. (2010b), "Automatic determination of parameters values for heuristics miner++", World Congress on Computational Intelligence (WCCI) incorporating Congress on Evolutionary Computation (CEC) 2010, Barcelona, Spain, 18-23 July.
  7. Cattafi, M., Lamma, E., Riguzzi, F. And Storari, S. (2010), "Incremental declarative process mining", in Szczerbicki, E. et al. (Eds) Smart Information and knowledge management, SCI 260, Springer, Berlin, pp. 103-127.
  8. Chang, J.F. (2006), "Business process management systems: Strategies and implementation", Vol. 19, Auerbach Publications, Taylor and Francis Group, Florida, USA.
  9. Cook, J. E., Du, Z., Liu, C. and Wolf, A. L. (2004), "Discovering models of behaviour for concurrent workflows", Computers in Industry, Vol. 53, No. 3, pp. 297-319.
  10. Cook, J. E. and Wolf, A. L. (1998a), "Discovering models of software processes from event-based data", ACM transactions on software engineering and methodology, Vol. 7, No. 3, pp. 215-249.
  11. Dustdar, S., Hoffmann, T. and van der Aalst, W. (2004), "Mining of ad-hoc business processes with teamlog", Technical University of Vienna, Vienna.
  12. Dustdar, S, Hoffmann, T, and van der Aalst, W. (2005), "Mining of ad-hoc business Processes with TeamLog", Data Knowledge and Engineering, Vol. 55, No. 2, pp. 129-158.
  13. Ferreira, D. R., (2009), "Applied Sequence Clustering Techniques for Process Mining", in: Cardoso, J., van der Aalst, W.M.P. (Eds), Handbook of Research on Business Process Modelling, IGI Global, pp. 492-513.
  14. Ferreira, H. and Ferreira, D. R., (2006), "An integrated life cycle for workflow management based on learning and planning". International Journal of Cooperative Information Systems, Vol. 15, No. 4, pp. 485-505.
  15. Ferreira, D., Zacarias, M., Malheiros, M. and Ferreira, P. (2007), "Approaching process mining with sequence clustering: Experiments and findings", in: Alonso, G., Dadam, P. and Rosemann, M. (Eds), Business Process Management (BPM 2007), Springer Verlag, Heidelberg, pp. 360-374.
  16. Fluxicon Process Laboratories (2010), "Process Mining Technology", available at: http://fluxicon.com/technology/. Accessed on (23/06/2010).
  17. Fujitsu (2010), "Automated Business Process Discovery", available at:http://www.fujitsu.com/global/services/software/interstage/. Accessed on (23/06/2010).
  18. Gaaloul, W., Gaaloul, K., Bhiri, S., Haller, A. and Hauswirth, M. (2009), "Log-based transactional workflow mining", Distributed Parallel Databases, Vol. 25, pp. 193- 240.
  19. Gaaloul, W. and Godart, C. (2005), "Mining workflow recovery from event based logs", in: van der Aalst, W. M. P., Benatallah, B., Casati, F., et al. (Eds), Business Process Management (BPM 2005), Springer Verlag, Heidelberg, pp. 169-185.
  20. Gabriel M. Veiga and Diogo R. Ferreira. (2009), "Understanding spaghetti models with sequence clustering for ProM", in: Rinderle-Ma, S. et al. (Eds), BPM 2009 Workshops, LNBIP 43, Springer-Verlag, Berlin.
  21. Gartner (2009), "Cool vendors in business process management", Gartner Inc. ID:G00165554
  22. Gartner (2008), "Automated business process discovery improves BPM outcomes", Gartner Inc. ID:G00164422
  23. Goedertier, S., Martens, D., Vanthienen, J. and Baesens, B. (2009), "Robust process discovery with artificial negative events", Journal of Machine Learning Research, Vol. 10, pp. 1305-1340.
  24. Golani, M. and Pinter, S. (2003), "Generating a process model from a process audit log", in: van der Aalst, W. M. P., ter Hofstede, A. H. M. and Weske, M. (Eds), Business Process Management (BPM 2003), Springer Verlag, Heidelberg, pp. 1020.
  25. Greco, G, Guzzo, A, and Pontieri, L. (2006), "Discovering Expressive Process Models by Clustering Log Traces", IEEE Transactions on Knowledge and Data Engineering, Vol. 18, pp.1010-1027.
  26. Gunther, C. W. and van der Aalst, W. M. P. (2007), "Fuzzy mining: Adaptive process simplification based on multi perspective metrics", in: Alonso, G., Dadam, P. and Rosemann, M. (Eds), Business Process Management (BPM 2007), Springer Verlag, Heidelberg, pp. 328-343.
  27. Hammori, M., Herbst, J. and Kleiner, N. (2004), "Interactive workflow mining". in: Desel, B. P. and Weske, M. (Eds), Business Process Management (BPM 2004), Springer Verlag, Heidelberg, pp. 211.
  28. Herbst, J. and Karagiannis, D., (2004), "Workflow mining with InWoLvE", Computers in Industry, Vol. 53, No. 3, pp. 245-264.
  29. Hwang, S. Y. and Yang, W. S. (2002), "On the discovery of process models from their instances", Decision Support Systems, Vol. 34, No. 1, pp. 41-57.
  30. IDS Scheer (2010), "ARIS Process Performance Manager", available at: http://www.ids- scheer.com/us/en/ARIS/ARIS_Platform/ARIS_Process_Performance_Manager/ 32600.html. Accessed on (23/06/2010).
  31. Iontas (2010), "Iontas Focus Software Suite", available at: http://www.iontas.com/pages/products/products.php. Accessed on (23/06/2010).
  32. Li, J., Wang, H. J., Zhang, Z., Zhao, J. L. (2010). "A policy-based process mining framework: Mining business policy texts for discovering process models", Information Systems and E-Business Management, Vol. 8, pp. 169-188.
  33. Li, Y. and Feng, Y. (2007), "Design of automatic business process modelling method based on process logs", Computer Integrated Manufacturing Systems, Vol. 13, No. 1, pp. 24-30.
  34. Lassen, K.B, van Dongen, B.F, and van der Aalst W.M.P. (2007), "Translating Message Sequence Charts to other Process Languages Using Process Mining", Beta Working Paper WP207, Eindhoven University of Technology, Eindhoven.
  35. Lamma, E., Mello, P., Riguzzi, F. and Storari, S. (2007), "Applying inductive logic programming to process mining", in: Blockeel, H., Ramon, J., Shavlik, J., et al. (Eds) Inductive Logic Programming, Springer Verlag, Heidelberg.
  36. Nikovski, D. and Baba, A. (2007), "Workflow trees for representation and mining of implicitly concurrent business processes", TR2007-072, Mitsubishi Electric Research Laboratories, Cambridge.
  37. OpenConnect (2010), "Comprehend", available at: http://www.oc.com/technology/index.jsp. Accessed on (23/06/2010).
  38. Pallas Athena (2010), "Process Mining", available at: http://www.pallas- athena.com/process-mining. Accessed on (23/06/2010).
  39. ProM (2010) "ProM Process Mining Framework", available at: http://prom.win.tue.nl/research/wiki/prom/start. Accessed (23/06/2010).
  40. Rozinat, A. and van der Aalst, W. M. P. (2006), "Decision mining in ProM", in: Dustdar, S., Fiadeiro, J. L. and Sheth, A. (Eds), Business Process Management (BPM 2006), Springer Verlag, Heidelberg, pp. 420-425.
  41. Schimm, G. (2003). "Mining most specific workflow models from event-based data", in: van der Aalst, W. M. P., ter Hofstede, A. H. M. and Weske, M. (Eds), Business Process Management (BPM) 2003, Springer Verlag, Heidelberg, pp. 1021.
  42. Schimm, G. (2004). "Mining exact models of concurrent workflows", Computers in Industry, Vol. 53, No. 3, pp. 265-281.
  43. Tiwari, A., Turner, C. J. and Majeed, B. (2008). "A review of business process mining: State of the art and future trends", Business Process Management Journal (BPMJ), Vol. 14, No. 1, pp. 5-22.
  44. Turner, C.J, and Tiwari, A. Mehnen, J, (2008), "A genetic programming approach to business process mining", in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), 12-16 July 2008, Atlanta, USA, pp 1307- 1314.
  45. van Dongen, B. F. and van der Aalst, W. M. P. (2005), "Multi-Phase process mining: Aggregating instance graphs into EPCs and petri nets", In: 2nd International Workshop on Applications of Petri Nets to Coordination, Workflow and Business Process Management (PNCWB) at the ICATPN 2005, pp. 35-58.
  46. van Dongen, B. F., Alves de Medeiros, A. K., Verbeek, H. M. W., Weijters, A. J. M. M. and van der Aalst, W. M. P. (2005), "The ProM Framework: A new era in process mining tool support", in: Ciardo, G. and Darondeau, P. (Eds), 26th International Conference on Applications and Theory of Petri Nets (ICATPN 2005), Springer Verlag, Heidelberg, pp. 444-454.
  47. van Dongen, B.F. and Adriansyah, A., (2009), "Process mining: Fuzzy clustering and performance visualisation", in: Rinderle-Ma, S. et al. (Eds): BPM 2009
  48. Workshops, LNBIP 43, Springer-Verlag Berlin pp. 158-169,
  49. van der Aalst, W.M.P. (2007), "Trends in business process analysis", in: Proceedings of the 9th International Conference on Enterprise Information Systems (ICEIS) 2007, Madeira, Institute for Systems and Technologies of Information, Control and Communication, INSTICC, Portugal, p. 12-22.
  50. van der Aalst, W. M. P., Weijters, A. J. M. M. and Maruster, L. (2002), "Workflow mining: Which processes can be rediscovered?", Beta Working Paper WP74, Eindhoven University of Technology, Eindhoven.
  51. van der Aalst, W. M. P. and Song, M. (2004), "Mining social networks: Uncovering interaction patterns in business processes", in: Desel, J., Pernici, B. and Weske, M. (Eds), Business Process Management (BPM 2004), Springer Verlag, Berlin, pp. 244-260.
  52. van der Aalst, W.M.P, and Weijters, A.J.M.M. (2004), "Process Mining: a Research Agenda", Computers in Industry, Vol. 53, pp. 231-244.
  53. van der Aalst, W. M. P., Rubin, V., Verbeek, H. M. W., van Dongen, B. F., Kindler, E. and Gunther, C. W. (2010), "Process mining: A two step approach to balance between underfitting and overfitting", Software Systems Modelling, Vol. 9, pp. 87-111.
  54. van der Aalst, W. M. P. and Alves de Medeiros, A. K. (2005), "Process mining and security: Detecting process executions and checking process conformance", Electronic Notes in Theoretical Computer Science, Vol. 121, pp. 3-21.
  55. Vergidis, K., Tiwari, A., Majeed, B. and Roy, R. (2007), "Optimisation of business process designs: An algorithmic approach with multiple objectives", International Journal of Production Economics, Vol. 109, pp. 105-121.
  56. Wen, L., Wang, J., van der Aalst, W.M.P., Wang, Z., Sun, J. (2009), "A novel approach for process mining based on event types", Journal of Intelligent Information Systems, Vol. 32, pp. 163-190.
  57. Weijters, A.J.M.M, and van der Aalst, W.M.P. (2003), "Rediscovering workflow models from event-based data using little thumb", Integrated Computer-Aided Engineering, Vol. 10, pp.151-162.
  58. Weijters, A.J.M.M, and van der Aalst, W.M.P. (2001), "Process mining: Discovering workflow models from event-based data", in: Krose, B, de Rijke, M, Schreiber, G, van Someren, M. (Eds), Proceedings of the 13th Belgium-Netherlands Conference on Artificial Intelligence (BNAIC 2001), pp. 283-290.
  59. Weijters, A.J.M.M, van der Aalst, W.M.P, van Dongen, B, Günther, C, Mans, R, Alves de Medeiros , A.K, Rozinat, A, Song M, and Verbeek E. (2007), "Process Mining with ProM", Dastani, M, and de Jong, E. (Eds), in: Proceedings of the 19th Belgium-Netherlands Conference on Artificial Intelligence (BNAIC).
  60. Wen, L, van der Aalst, W.M.P, Wang, J, and Sun, J. (2007), "Mining Process Models with Non Free Choice Constructs", Data Mining and Knowledge Discovery, Vol. 15, pp.145-180.