Academia.eduAcademia.edu

Outline

On finitely related semigroups

2013, Semigroup Forum

https://doi.org/10.1007/S00233-012-9455-6

Abstract

An algebraic structure is finitely related (has finite degree) if its term functions are determined by some finite set of finitary relations. We show that the following finite semigroups are finitely related: commutative semigroups, 3-nilpotent monoids, regular bands, semigroups with a single idempotent, and Clifford semigroups. Further we provide the first example of a semigroup that is not finitely related: the 6-element Brandt monoid.

References (34)

  1. Aichinger, E., Mayr, P., McKenzie, R.: On the number of finite algebraic structures. J. Eur. Math. Soc. (2011, to appear). Available from arXiv:1103.2265v1
  2. Baker, K.A.: Finite equational bases for finite algebras in a congruence-distributive equational class. Adv. Math. 24(3), 207-243 (1977)
  3. Baker, K.A., Pixley, A.F.: Polynomial interpolation and the Chinese remainder theorem for algebraic systems. Math. Z. 143(2), 165-174 (1975)
  4. Barto, L.: Finitely related algebras in congruence distributive varieties have near unanimity terms. Can. J. Math.. Published electronically: 2011-12-24. doi:10.4153/CJM-2011-087-3
  5. Berman, J., Idziak, P., Marković, P., McKenzie, R., Valeriote, M., Willard, R.: Varieties with few subalgebras of powers. Trans. Am. Math. Soc. 362(3), 1445-1473 (2010)
  6. Bodnarčuk, V.G., Kalužnin, L.A., Kotov, V.N., Romov, B.A.: Galois theory for Post algebras. I, II. Kibernetika 3, 1-10 (1969); ibid. 5, 1-9 (1969)
  7. Bova, S., Chen, H., Valeriote, M.: Generic expression hardness results for primitive positive formula comparison. In: 38th International Colloquium on Automata, Languages, and Programming (ICALP), Zürich, Switzerland. Springer, Berlin (2011)
  8. Bryant, R.M.: The laws of finite pointed groups. Bull. Lond. Math. Soc. 14(2), 119-123 (1982)
  9. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, New York (1981)
  10. Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups. Vol. I. Mathematical Surveys, vol. 7. Am. Math. Soc., Providence (1961)
  11. Davey, B.A., Jackson, M.G., Pitkethly, J.G., Szabó, C.: Finite degree: algebras in general and semi- groups in particular. Semigroup Forum 83(1), 89-122 (2011)
  12. Dolinka, I.: Finite regular bands are finitely related. Bull. Aust. Math. Soc.. Published online: 15 May 2012, available on CJO 2012. doi:10.1017/S0004972712000263
  13. Evans, T.: The lattice of semigroup varieties. Semigroup Forum 2(1), 1-43 (1971)
  14. Feder, T., Vardi, M.: The computational structure of monotone monadic SNP and constraint satisfac- tion: a study through datalog and group theory. SIAM J. Comput. 28(1), 57-104 (1999) (electronic)
  15. Fennemore, C.: All varieties of bands. Semigroup Forum 1(2), 172-179 (1970)
  16. Geiger, D.: Closed systems of functions and predicates. Pac. J. Math. 27, 95-100 (1968)
  17. Gerhard, J.A.: The lattice of equational classes of idempotent semigroups. J. Algebra 15, 195-224 (1970)
  18. Grillet, P.A.: Commutative Semigroups. Advances in Mathematics (Dordrecht), vol. 2. Kluwer Aca- demic, Dordrecht (2001)
  19. Howie, J.M.: Fundamentals of Semigroup Theory. London Mathematical Society Monographs. New Series, vol. 12. Clarendon/Oxford University Press, Oxford (1995). Oxford Science Publications
  20. Jablonskiȋ, S.V.: The structure of the upper neighborhood for predicate-describable classes in P k . Dokl. Akad. Nauk SSSR 218, 304-307 (1974)
  21. Kleitman, D.J., Rothschild, B.R., Spencer, J.H.: The number of semigroups of order n. Proc. Am. Math. Soc. 55(1), 227-232 (1976)
  22. Klíma, O.: Complexity issues of checking identities in finite monoids. Semigroup Forum 79(3), 435- 444 (2009)
  23. Koubek, V., Rödl, V.: Note on the number of monoids of order n. Comment. Math. Univ. Carol. 26(2), 309-314 (1985)
  24. Marković, P., Maróti, M., McKenzie, R.: Finitely related clones and algebras with cube terms. Order 29(2), 345-359 (2012)
  25. Mel'nik, I.I.: Varieties and lattices of varieties of semigroups. In: Studies in Algebra, no. 2 (Russian), pp. 47-57. Izdat. Saratov Univ., Saratov (1970)
  26. Perkins, P.: Bases for equational theories of semigroups. J. Algebra 11, 298-314 (1969)
  27. Petrich, M., Reilly, N.R.: Completely Regular Semigroups. Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 23. Wiley, New York (1999). A Wiley-Interscience Publication
  28. Pöschel, R., Kalužnin, L.A.: Funktionen-und Relationenalgebren. Mathematische Monographien [Mathematical Monographs], vol. 15. VEB Deutscher Verlag der Wissenschaften, Berlin (1979). Ein Kapitel der diskreten Mathematik. [A chapter in discrete mathematics]
  29. Romov, B.A.: Local characteristics of Post algebras. I. Kibernetika 5, 38-45 (1976)
  30. Rosenberg, I.G.: Completeness properties of multiple-valued logic algebras. In: Computer Science and Multiple-Valued Logic: Theory and Applications. North-Holland, Amsterdam (1977)
  31. Rosenberg, I.G., Szendrei, Á.: Degrees of clones and relations. Houst. J. Math. 9(4), 545-580 (1983)
  32. Saliȋ, V.N.: Equationally normal varieties of semigroups. Izv. Vysš. Učebn. Zaved., Mat. 5(84), 61-68 (1969)
  33. Seif, S.: The Perkins semigroup has co-NP-complete term-equivalence problem. Int. J. Algebra Com- put. 15(2), 317-326 (2005)
  34. Willard, R.: Essential arities of term operations in finite algebras. Discrete Math. 149(1-3), 239-259 (1996)