Academia.eduAcademia.edu

Outline

Analysis of a gossip protocol in PRISM

2008, ACM SIGMETRICS Performance Evaluation Review

https://doi.org/10.1145/1481506.1481511

Abstract

Gossip protocols have been proposed as a robust and efficient method for disseminating information throughout dynamically changing networks. We present an analysis of a gossip protocol using probabilistic model checking and the tool PRISM. Since the behaviour of these protocols is both probabilistic and nondeterministic in nature, this provides a good example of the exhaustive, quantitative analysis that probabilistic model checking techniques can provide. In particular, we compute minimum and maximum values, representing the best-and worst-case performance of the protocol under any scheduling, and investigate both their relationship with the average values that would be obtained through simulation and the precise scheduling which achieve these values.

References (20)

  1. REFERENCES
  2. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Software Engineering, 29(6):524-541, 2003.
  3. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time logic with fairness. Distributed Computing, 11(3):125-155, 1998.
  4. R. Bakhshi, F. Bonnet, W. Fokkink, and B. Haverkort. Formal analysis techniques for gossiping protocols. ACM SIGOPS Operating Systems Review, 41(5):28-36, 2007.
  5. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems. In Proc. FST&TCS'95, volume 1026 of LNCS, pages 499-513. Springer, 1995.
  6. M. Duflot, M. Kwiatkowska, G. Norman, and D. Parker. A formal analysis of Bluetooth device discovery. Int. Journal on Software Tools for Technology Transfer, 8(6):621-632, 2006.
  7. A. Fehnker and P. Gao. Formal verification and simulation for performance analysis for probabilistic broadcast protocols. In Proc. ADHOC-NOW'06, volume 4104 of LNCS, pages 128-141. Springer, 2006.
  8. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects of Computing, 6(5):512-535, 1994.
  9. A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for automatic verification of probabilistic systems. In Proc. TACAS'06, volume 3920 of LNCS, pages 441-444. Springer, 2006.
  10. M. Jelasity, S. Voulgaris, R. Guerraoui, A. Kermarrec, and M. van Steen. Gossip-based peer sampling. ACM Trans. Computer Systems, 25(3), 2007.
  11. J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov Chains. Springer-Verlag, 2nd edition, 1976.
  12. M. Kwiatkowska, G. Norman, and D. Parker. Game-based abstraction for Markov decision processes. In Proc. QEST'06, pages 157-166. IEEE Press, 2006.
  13. M. Kwiatkowska, G. Norman, and D. Parker. Symmetry reduction for probabilistic model checking. In Proc. CAV'06, volume 4114 of LNCS, pages 234-248. Springer, 2006.
  14. M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance analysis of probabilistic timed automata using digital clocks. Formal Methods in System Design, 29:33-78, 2006.
  15. M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking of the IEEE 802.11 wireless local area net work protocol. In Proc. PAPM/PROBMIV'02, volume 2399 of LNCS, pages 169-187. Springer, 2002.
  16. M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model checking for probabilistic timed automata. Information and Computation, 205(7):1027-1077, 2007.
  17. PRISM web site. www.prismmodelchecker.org.
  18. J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical Techniques for Analyzing Concurrent and Probabilistic Systems, P. Panangaden and F. van Breugel (eds.), volume 23 of CRM Monograph Series. AMS, 2004.
  19. B. Wachter, L. Zhang, and H. Hermanns. Probabilistic model checking modulo theories. In Proc. QEST'07, pages 129-140. IEEE Press, 2007.
  20. F. Werner and P. Schmitt. Analysis of the authenticated query flooding protocol by probabilistic means. In Proc. WONS'08, pages 101-104, 2008.