Academia.eduAcademia.edu

Outline

Threshold Ordering for Preconditioning Nonsymmetric Problems

https://doi.org/10.1007/11758501_107

Abstract

The e ect of a threshold variant TPABLO of the permutation (and partitioning) algorithm PABLO on the performance of certain preconditionings is explored. The goal of these permutations is to produce matrices with dense diagonal blocks, and in the threshold variant, with large entries in the diagonal blocks. Experiments are reported using matrices arising from the discretization of elliptic partial di erential equations. The iterative solvers used are GMRES, QMR, BiCGStab and CGNR. The preconditioners are di erent incomplete factorizations. It is shown that preprocessing the matrices with TPABLO has a positive e ect on the overall performance, resulting in better convergence rates for highly nonsymmetric problems.

References (18)

  1. Benzi M., T uma M.: A comparison of preconditioning techniques for general sparse matrices. In S. Margenov and P. Vassilevski (Eds.), Iterative Methods in Linear Algebra, II, IMACS Series in Computational and Applied Mathematics Vol. 3, pages 191{203 (1996)
  2. Benzi M., T uma M.: A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM J. Sci. Comput. (1998) to appear
  3. Choi H., Szyld D. B.: Application of threshold partitioning of sparse matrices to Markov chains. Proceedings of the IEEE International Computer Performance and Dependability Symposium, IPDS'96, Urbana-Champaign, Illinois, September 4{ 6, 1996, pages 158{165, IEEE Computer Society Press, Los Alamitos, California (1996)
  4. Chow E., Saad Y.: Approximate inverse techniques for block-partitioned matrices. SIAM J. Sci. Comput. (1997) to appear
  5. Du I., Erisman A. M., Reid J. K: Direct Methods for Sparse Matrices. Clarendon Press, Oxford, 1986
  6. Du I., Meurant G. A.: The e ect of ordering on preconditioned conjugate gradi- ents. BIT 29 (1989) 635{657
  7. Dutto, L. C., Habashi W. G., Fortin M.: Parallelizable block diagonal precondi- tioners for the compressible Navier-Stokes equations. Computer Methods Appl. Mech. Engng. 117 (1994) 15{47
  8. Elman H. C.: A stability analysis of incomplete LU factorizations. Math. Comp. 47 (1986) 191{217
  9. Freund R., Nachtigal N. M.: QMR: A quasi-minimal residual method for non- Hermitian linear systems. Num. Math. 60 (1991) 315{339
  10. Meijerink J. A., and van der Vorst, H.: An iterative solution method for linear systems of which the coe cient matrix is a symmetric M-matrix. Math. Comp. 31 (1977) 148{162
  11. O'Neil J., Szyld D. B.: A block ordering method for sparse matrices. SIAM J. Sci. Stat. Comput. 11 (1990) 811{823
  12. Paloschi J. R.: Testing a new parallel preconditioner on linear systems arising from owsheeting simulation. Proceedings of ESCAPE7, Trondheim, May 1997, to ap- pear.
  13. Saad Y.: Preconditioning techniques for nonsymmetric and inde nite linear sys- tems. J. Comp. Appl. Math. 24 (1988) 89{105
  14. Saad Y.: ILUT: A dual threshold incomplete LU factorization. Num. Lin. Alg. Applic. 1 (1994) 387{402
  15. Saad Y.: Preconditioned Krylov subspace methods for CFD applications. In W. G. Habashi (Ed.), Solution Techniques for Large-Scale CFD Problems, J. Wiley, Chichester, pages 139{158 (1995)
  16. Saad Y., Schultz M. H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (1986) 856{ 869
  17. van der Vorst, H.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 12 (1992) 631{644
  18. Yang G., Dutto L. C., Fortin M.: Inexact block Jacobi-Broyden methods for solving nonlinear systems of equations. SIAM J. Sci. Comput. (1997) to appear