Academia.eduAcademia.edu

Outline

Circle

2005, Proceedings of the 2005 ACM symposium on Applied computing - SAC '05

https://doi.org/10.1145/1066677.1066801

Abstract

We present Circle, a classification algorithm based on the priciples of boolean function minimmization. This classification process uses a recursive method to generate a set of impli-

References (18)

  1. M. Dalkilic and E. Robertson. Information de- pendencies. In Proc. of the 19th ACM SIGACT-
  2. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis. Cambridge, 1998.
  3. W. J. Ewens and G. R. Grant. Statistical Meth- ods in Bioinformatics: An Introduction. Springer, 2001.
  4. V. Guralnik and G. Karypis. A scalable al- gorithm for clustering protein sequences. In Procceedings of the Workshop on Data Min- ing in BioInformatics (BIOKDD 2001), San Francisco, CA, USA, August 2001. available at http://www.cs.rpi.edu/ zaki/BIOKDD01/.
  5. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning -Data Mining, Inference and Prediction. Springer, 2001.
  6. K. Hoffmann, P. Bucher, L. Falquet, and A. Bairoch. The PROSITE database: Its sta- tus in 1999. Nucleic Acids Research, 27:215-219, 1999.
  7. M. Karnaugh. The map method for synthesis of combinatorial logic circuits. Trans. AIEE. pt I, 72(9):593-599, November 1953.
  8. I. Korf, M. Yandell, and J. Bedell. BLAST. O'Reilly, 2003.
  9. L. Liao and W. S. Noble. Combining pairwise sequence similarity and support vector machines for remote protein homology detection. In Pro- ceedings of the Sixth International Conference on Computational Molecular Biology, pages 225-232, April 18-21 2002.
  10. G. F. Luger. Artificial Intelligence -Struc- tures and Strategies for Complex Problem Solv- ing, chapter 8, pages 305-320. Addison Wesley, 4th edition edition, 2002.
  11. O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear programming. SIAM News, 23(5):1 & 18, September 1990.
  12. E. L. McCluskey Jr. Minimization of boolean functions. Bell System Technical Journal, 35:1417-1444, April 1959.
  13. T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
  14. D. W. Mount. Bioinformatics -Sequence and Genome Analysis. Cold Spring Harbor Labora- tory Press, 2001.
  15. A. Murzin, S. Brenner, T. Hubbard, and C. Chothia. SCOP: A structural classification of proteins database for the investigation of se- quences and structures. Journal of Molecular Bi- ology, 247:536-540, 1995.
  16. S.L.Salzberg. On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1:317-328, 1997.
  17. T. Smith and M. Waterman. Identification of common molecular subsequences. Journal of Molecular Biology, 147:195-197, 1981.
  18. J. D. Ullman. Principles of Database and Knowledge-base Systems -Volume 1: Classical Database Systems, chapter 7. Computer Science Press, 1988.