Academia.eduAcademia.edu

Outline

SETTER: web server for RNA structure comparison

2012, Nucleic Acids Research

https://doi.org/10.1093/NAR/GKS560

Abstract

The recent discoveries of regulatory non-coding RNAs changed our view of RNA as a simple information transfer molecule. Understanding the architecture and function of active RNA molecules requires methods for comparing and analyzing their 3D structures. While structural alignment of short RNAs is achievable in a reasonable amount of time, large structures represent much bigger challenge. Here, we present the SETTER web server for the RNA structure pairwise comparison utilizing the SETTER (SEcondary sTructure-based TERtiary Structure Similarity Algorithm) algorithm. The SETTER method divides an RNA structure into the set of non-overlapping structural elements called generalized secondary structure units (GSSUs). The SETTER algorithm scales as O(n 2 ) with the size of a GSSUs and as O(n) with the number of GSSUs in the structure. This scaling gives SETTER its high speed as the average size of the GSSU remains constant irrespective of the size of the structure. However, the favorable speed of the algorithm does not compromise its accuracy. The SETTER web server together with the stand-alone implementation of the SETTER algorithm are freely accessible at http://siret.cz/setter.

References (27)

  1. Mattick,J.S. and Makunin,I.V. (2006) Non-coding RNA. Hum. Mol. Genet., 15, 17-29.
  2. Taft,R.J., Pang,K.C., Mercer,T.R., Dinger,M. and Mattick,J.S. (2010) Non-coding RNAs: regulators of disease. J. Pathol., 220, 126-139.
  3. Apostolico,A., Ciriello,G., Guerra,C., Heitsch,C.E., Hsiao,C. and Williams,L.D.D. (2009) Finding 3D motifs in ribosomal RNA structures. Nucleic Acids Res., 37, e29.
  4. Wadley,L.M. and Pyle,A.M. (2004) The identification of novel RNA structural motifs using COMPADRES: an automated approach to structural discovery. Nucleic Acids Res., 32, 6650-6659.
  5. Duarte,C.M., Wadley,L.M. and Pyle,A.M. (2003) RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space. Nucleic Acids Res., 31, 4755-4761.
  6. Zhong,C., Tang,H. and Zhang,S. (2010) RNAMotifScan: automatic identification of RNA structural motifs using secondary structural alignment. Nucleic Acids Res., 38, e176.
  7. Holbrook,S.R. (2008) Structural principles from large RNAs. Ann. Rev. Biophys., 37, 445-464.
  8. Batey,R.T., Rambo,R.P. and Doudna,J.A. (1999) Tertiary motifs in RNA structure and folding. Angew. Chem. Ed Intil Engl., 38, 2326-2343.
  9. Laing,C. and Schlick,T. (2010) Computational approaches to 3D modeling of RNA. J. Phys. Condens. Mat., 22, 283101.
  10. Laing,C. and Schlick,T. (2011) Computational approaches to RNA structure prediction, analysis, and design. Curr. Opin. Struct. Biol., 21, 306-18.
  11. Tamura,M., Hendrix,D.K., Klosterman,P.S., Schimmelman,N.R., Brenner,S.E. and Holbrook,S.R. (2004) SCOR: Structural Classification of RNA, version 2.0. Nucleic Acids Res., 32, D182-D184.
  12. Murthy,V.L. and Rose,G.D. (2003) RNABase: an annotated database of RNA structures. Nucleic Acids Res., 31, 502-504.
  13. Abraham,M., Dror,O., Nussinov,R. and Wolfson,H.J. (2008) Analysis and classification of RNA tertiary structures. RNA, 14, 2274-2289.
  14. Ferre`,F., Ponty,Y., Lorenz,W.A. and Clote,P. (2007) DIAL: a web server for the pairwise alignment of two RNA three-dimensional structures using nucleotide, dihedral angle and base-pairing similarities. Nucleic Acids Res., 35, W659-W668.
  15. Capriotti,E. and Marti-Renom,M.A. (2009) SARA: a server for function annotation of RNA structures. Nucleic Acids Res., 37, W260-W265.
  16. Chang,Y.-F., Huang,Y.-L. and Lu,C.L. (2008) SARSA: a web tool for structural alignment of RNA using a structural alphabet. Nucleic Acids Res., 36, W19-W24.
  17. Wang,C.-W., Chen,K.-T. and Lu,C.L. (2010) iPARTS: an improved tool of pairwise alignment of RNA tertiary structures. Nucleic Acids Res., 38, W340-W347.
  18. Dror,O., Nussinov,R. and Wolfson,H. (2005) ARTS: alignment of RNA tertiary structures. Bioinformatics, 21(Suppl. 2), ii47-ii53.
  19. Bauer,R.A., Rother,K., Moor,P., Reinert,K., Steinke,T., Bujnicki,J.M. and Preissner,R. (2009) Fast structural alignment of biomolecules using a hash table, N-grams and string descriptors. Algorithms, 2, 692-709.
  20. Rahrig,R.R., Leontis,N.B. and Zirbel,C.L. (2010) R3D Align: global pairwise alignment of RNA 3D structures using local superpositions. Bioinformatics, 26, 2689-2697.
  21. Hoksza,D. and Svozil,D. (2012) Efficient RNA pairwise structure comparison by SETTER method. Bioinformatics, 28, 1858-1864.
  22. Kabsch,W. (1976) A solution for the best rotation to relate two sets of vectors. Acta Crystallog. A, 32, 922-923.
  23. Capriotti,E. and Marti-Renom,M.A. (2008) RNA structure alignment by a unit-vector approach. Bioinformatics, 24, i112-i118.
  24. Berman,H.M., Westbrook,J.D., Feng,Z., Gilliland,G., Bhat,T.N., Weissig,H., Shindyalov,I.N. and Bourne,P.E. (2000) The Protein Data Bank. Nucleic Acids Res., 28, 235-242.
  25. Lu,X.-J. and Olson,W.K. (2008) 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat. Protoc., 3, 1213-1227.
  26. Westbrook,J.D. and Fitzgerald,P.M. (2003) The PDB format, mmCIF, and other data formats. Method. Biochem. Anal., 44, 161-179.
  27. Jmol: An Open-source Java Viewer for Chemical Structures in 3D. http://www.jmol.org/ (4 June 2012, date last accessed).