SeMiTri
2011, Proceedings of the 14th International Conference on Extending Database Technology - EDBT/ICDT '11
https://doi.org/10.1145/1951365.1951398Abstract
GPS devices allow recording the movement track of the moving object they are attached to. This data typically consists of a stream of spatio-temporal (x,y,t) points. For application purposes the stream is transformed into finite subsequences called trajectories. Existing knowledge extraction algorithms defined for trajectories mainly assume a specific context (e.g. vehicle movements) or analyze specific parts of a trajectory (e.g. stops), in association with data from chosen geographic sources (e.g. points-of-interest, road networks). We investigate a more comprehensive semantic annotation framework that allows enriching trajectories with any kind of semantic data provided by multiple 3rd party sources.
References (44)
- REFERENCES
- L. O. Alvares, V. Bogorny, B. Kuijpers, J. Macedo, B. Moelans, and A. Vaisman. A Model for Enriching Trajectories with Semantic Geographical Information. In GIS, page 22, 2007.
- N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles. SIGMOD Record, 19(2):322-331, 1990.
- D. Bernstein and A. Kornhauser. An Introduction to Map Matching for Personal Navigation Assistants. Princeton University, 1996.
- S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On Map-Matching Vehicle Tracking Data. In VLDB, pages 853-864, 2005.
- T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient Processing of Spatial Joins using R-Trees. In SIGMOD, pages 237-246, 1993.
- X. Cao, G. Cong, and C. Jensen. Mining Significant Street name Start time Walk Ch. veilloud 08:50:26
- Rt. du Boi 08:54:46
- Rt. de Villar 08:57:24
- Tir Fédéra 08:58:41
- Metro M1 08:59:24
- Walk Rt. de la Sorg 09:03:57
- Ch. du Barrag 09:04:42
- La Diagonal 09:05:24
- Semantic Locations From GPS Data. In VLDB, pages 1009-1020, 2010.
- G. D. Forney. The Viterbi Algorithm. Proceedings of the IEEE, 61(3):268-278, 1973.
- E. Frentzos. Trajectory Data Management in Moving Object Databases. PhD thesis, University of Piraeus, 2008.
- M. C. González, C. A. Hidalgo, and A. L. Barabási. Understanding Individual Human Mobility Patterns. Nature, 453(7196):779-782, 2008.
- R .H .G üting and M. Schneider. Realm-Based Spatial Data Types: The ROSE Algebra. VLDB Journal, 4:243-286, 1995.
- R .H .G üting and M. Schneider. Moving Objects Databases. Morgan Kaufmann, 2005.
- J. Han, J.-G. Lee, H. Gonzalez, and X. Li. Mining Massive RFID, Trajectory, and Traffic Data Sets (Tutorial). In KDD, 2008.
- H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of Convoys in Trajectory Databases. In VLDB, pages 1068-1080, 2008.
- N. Kiukkoneny, J. Blom, O. Dousse, D. Gatica-Perez, and J. Laurila. Towards Rich Mobile Phone Datasets: Lausanne Data Collection Campaign. In ICPS, 2010.
- J. Krumm and E. Horvitz. Predestination: Inferring Destinations from Partial Trajectories. In Ubicomp, pages 243-260, 2006.
- Z. Li, B. Ding, J. Han, R. Kays, and P. Nye. Mining Periodic Behaviors for Moving Objects. In KDD, pages 1099-1108, 2010.
- Z. Li, M. Ji, J.-G. Lee, L.-A. Tang, Y. Yu, J. Han, and R. Kays. MoveMine: Mining Moving Object Databases. In SIGMOD, pages 1203-1206, 2010.
- Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang. Map-Matching for Low-Sampling-Rate Gps Trajectories. In GIS, pages 352-361, 2009.
- M. F. Mokbel and J. J. Levandoski. Toward Context and Preference-Aware Location-Based Services. In MobiDE, pages 25-32, 2009.
- M. Nergiz, M. Atzori, Y. Saygin, and B. Güç. Towards Trajectory Anonymization: a Generalization-Based Approach. Transactions on Data Privacy, 2(1):47-75, 2008.
- P. Newson and J. Krumm. Hidden Markov Map Matching Through Noise and Sparseness. In GIS, pages 336-343, 2009.
- A. T. Palma, V. Bogorny, B. Kuijpers, and L. O. Alvares. A Clustering-based Approach for Discovering Interesting Places in Trajectories. In SAC, pages 863-868, 2008.
- N. Pelekis, E. Frentzos, N. Giatrakos, and Y. Theodoridis. HERMES: Aggregative LBS via a Trajectory DB Engine. In SIGMOD, pages 1255-1258, 2008.
- M. A. Quddus, W. Y. Ochieng, and R. B. Noland. Current Map-Matching Algorithms for Transport Applications: State-Of-The Art and Future Research Directions. Transportation Research Part C, 15(5):312-328, 2007.
- L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Readings in speech recognition, pages 267-296, 1990.
- S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo, F. Porto, and C. Vangenot. A Conceptual View on Trajectories. Data and Knowledge Engineering, 65:126-146, 2008.
- C. E. White, D. Bernstein, and A. L. Kornhauser. Some map matching algorithms for personal navigation assistants. Tramsportation Research Part C, 8(1-6):91-108, 2000.
- K. Xie, K. Deng, and X. Zhou. From Trajectories to Activities: a Spatio-Temporal Join Approach. In LBSN, pages 25-32, 2009.
- Z. Yan, J. Macedo, C. Parent, and S. Spaccapietra. Trajectory Ontologies and Queries. Transactions in GIS, 12(s1):75-91, 2008.
- Z. Yan, C. Parent, S. Spaccapietra, and D. Chakraborty. A Hybrid Model and Computing Platform for Spatio-Semantic Trajectories. In ESWC, pages 60-75, 2010.
- Z. Yan, L. Spremic, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer. Automatic Construction and Multi-level Visualization of Semantic Trajectories. In GIS, pages 524-525, 2010.
- Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma. Understanding transportation modes based on GPS data for web applications. Transactions on the Web, 4(1):1-36, 2010.
- Y. Zheng and X. Xie. Learning Location Correlation from GPS Trajectories. In MDM, pages 27-32, 2010.
- Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining Correlation Between Locations Using Human Location History. In GIS, pages 472-475, 2009.
- C. Zhou, D. Frankowski, P. J. Ludford, S. Shekhar, and L. G. Terveen. Discovering Personally Meaningful Places: an Interactive Clustering Approach. ACM Transactions on Information Systems, 25(3):12, 2007.