Academia.eduAcademia.edu

Outline

SeMiTri

2011, Proceedings of the 14th International Conference on Extending Database Technology - EDBT/ICDT '11

https://doi.org/10.1145/1951365.1951398

Abstract

GPS devices allow recording the movement track of the moving object they are attached to. This data typically consists of a stream of spatio-temporal (x,y,t) points. For application purposes the stream is transformed into finite subsequences called trajectories. Existing knowledge extraction algorithms defined for trajectories mainly assume a specific context (e.g. vehicle movements) or analyze specific parts of a trajectory (e.g. stops), in association with data from chosen geographic sources (e.g. points-of-interest, road networks). We investigate a more comprehensive semantic annotation framework that allows enriching trajectories with any kind of semantic data provided by multiple 3rd party sources.

References (44)

  1. REFERENCES
  2. L. O. Alvares, V. Bogorny, B. Kuijpers, J. Macedo, B. Moelans, and A. Vaisman. A Model for Enriching Trajectories with Semantic Geographical Information. In GIS, page 22, 2007.
  3. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles. SIGMOD Record, 19(2):322-331, 1990.
  4. D. Bernstein and A. Kornhauser. An Introduction to Map Matching for Personal Navigation Assistants. Princeton University, 1996.
  5. S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On Map-Matching Vehicle Tracking Data. In VLDB, pages 853-864, 2005.
  6. T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient Processing of Spatial Joins using R-Trees. In SIGMOD, pages 237-246, 1993.
  7. X. Cao, G. Cong, and C. Jensen. Mining Significant Street name Start time Walk Ch. veilloud 08:50:26
  8. Rt. du Boi 08:54:46
  9. Rt. de Villar 08:57:24
  10. Tir Fédéra 08:58:41
  11. Metro M1 08:59:24
  12. Walk Rt. de la Sorg 09:03:57
  13. Ch. du Barrag 09:04:42
  14. La Diagonal 09:05:24
  15. Semantic Locations From GPS Data. In VLDB, pages 1009-1020, 2010.
  16. G. D. Forney. The Viterbi Algorithm. Proceedings of the IEEE, 61(3):268-278, 1973.
  17. E. Frentzos. Trajectory Data Management in Moving Object Databases. PhD thesis, University of Piraeus, 2008.
  18. M. C. González, C. A. Hidalgo, and A. L. Barabási. Understanding Individual Human Mobility Patterns. Nature, 453(7196):779-782, 2008.
  19. R .H .G üting and M. Schneider. Realm-Based Spatial Data Types: The ROSE Algebra. VLDB Journal, 4:243-286, 1995.
  20. R .H .G üting and M. Schneider. Moving Objects Databases. Morgan Kaufmann, 2005.
  21. J. Han, J.-G. Lee, H. Gonzalez, and X. Li. Mining Massive RFID, Trajectory, and Traffic Data Sets (Tutorial). In KDD, 2008.
  22. H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of Convoys in Trajectory Databases. In VLDB, pages 1068-1080, 2008.
  23. N. Kiukkoneny, J. Blom, O. Dousse, D. Gatica-Perez, and J. Laurila. Towards Rich Mobile Phone Datasets: Lausanne Data Collection Campaign. In ICPS, 2010.
  24. J. Krumm and E. Horvitz. Predestination: Inferring Destinations from Partial Trajectories. In Ubicomp, pages 243-260, 2006.
  25. Z. Li, B. Ding, J. Han, R. Kays, and P. Nye. Mining Periodic Behaviors for Moving Objects. In KDD, pages 1099-1108, 2010.
  26. Z. Li, M. Ji, J.-G. Lee, L.-A. Tang, Y. Yu, J. Han, and R. Kays. MoveMine: Mining Moving Object Databases. In SIGMOD, pages 1203-1206, 2010.
  27. Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang. Map-Matching for Low-Sampling-Rate Gps Trajectories. In GIS, pages 352-361, 2009.
  28. M. F. Mokbel and J. J. Levandoski. Toward Context and Preference-Aware Location-Based Services. In MobiDE, pages 25-32, 2009.
  29. M. Nergiz, M. Atzori, Y. Saygin, and B. Güç. Towards Trajectory Anonymization: a Generalization-Based Approach. Transactions on Data Privacy, 2(1):47-75, 2008.
  30. P. Newson and J. Krumm. Hidden Markov Map Matching Through Noise and Sparseness. In GIS, pages 336-343, 2009.
  31. A. T. Palma, V. Bogorny, B. Kuijpers, and L. O. Alvares. A Clustering-based Approach for Discovering Interesting Places in Trajectories. In SAC, pages 863-868, 2008.
  32. N. Pelekis, E. Frentzos, N. Giatrakos, and Y. Theodoridis. HERMES: Aggregative LBS via a Trajectory DB Engine. In SIGMOD, pages 1255-1258, 2008.
  33. M. A. Quddus, W. Y. Ochieng, and R. B. Noland. Current Map-Matching Algorithms for Transport Applications: State-Of-The Art and Future Research Directions. Transportation Research Part C, 15(5):312-328, 2007.
  34. L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Readings in speech recognition, pages 267-296, 1990.
  35. S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo, F. Porto, and C. Vangenot. A Conceptual View on Trajectories. Data and Knowledge Engineering, 65:126-146, 2008.
  36. C. E. White, D. Bernstein, and A. L. Kornhauser. Some map matching algorithms for personal navigation assistants. Tramsportation Research Part C, 8(1-6):91-108, 2000.
  37. K. Xie, K. Deng, and X. Zhou. From Trajectories to Activities: a Spatio-Temporal Join Approach. In LBSN, pages 25-32, 2009.
  38. Z. Yan, J. Macedo, C. Parent, and S. Spaccapietra. Trajectory Ontologies and Queries. Transactions in GIS, 12(s1):75-91, 2008.
  39. Z. Yan, C. Parent, S. Spaccapietra, and D. Chakraborty. A Hybrid Model and Computing Platform for Spatio-Semantic Trajectories. In ESWC, pages 60-75, 2010.
  40. Z. Yan, L. Spremic, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer. Automatic Construction and Multi-level Visualization of Semantic Trajectories. In GIS, pages 524-525, 2010.
  41. Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma. Understanding transportation modes based on GPS data for web applications. Transactions on the Web, 4(1):1-36, 2010.
  42. Y. Zheng and X. Xie. Learning Location Correlation from GPS Trajectories. In MDM, pages 27-32, 2010.
  43. Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining Correlation Between Locations Using Human Location History. In GIS, pages 472-475, 2009.
  44. C. Zhou, D. Frankowski, P. J. Ludford, S. Shekhar, and L. G. Terveen. Discovering Personally Meaningful Places: an Interactive Clustering Approach. ACM Transactions on Information Systems, 25(3):12, 2007.