Triangulations in CGAL
2002, Computational Geometry
Abstract
This paper presents the main algorithmic and design choices that have been made to implement triangulations in the computational geometry algorithms library Cgal.
References (43)
- References
- F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Comput. Surv., 23(3):345-405, September 1991.
- Brad Barber. Qhull. http://www.geom.umn.edu/locate/qhull, Version 2.3.
- C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The Quick- hull algorithm for convex hulls. ACM Trans. Math. Softw., 22(4):469-483, December 1996.
- M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In D.-Z. Du and F. K. Hwang, editors, Computing in Euclidean Geome- try, volume 1 of Lecture Notes Series on Computing, pages 23-90. World Scientific, Singapore, 1992.
- Y. Bertrand and J.-F. Dufourd. Algebraic specification of a 3D-modeler based on hypermaps. CVGIP: Graph. Models Image Process., 56:29-60, 1994.
- Jean-Daniel Boissonnat and Mariette Yvinec. Algorithmic Geometry. Cam- bridge University Press, UK, 1998. Translated by Hervé Brönnimann.
- E. Brisson. Representing geometric structures in d dimensions: Topology and order. Discrete Comput. Geom., 9:387-426, 1993.
- Hervé Brönnimann, Christoph Burnikel, and Sylvain Pion. Interval arith- metic yields efficient dynamic filters for computational geometry. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 165-174, 1998.
- D. Cazier and J.-F. Dufourd. A formal specification of geometric refine- ments. Visual Comput., 2000.
- Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.
- Mark de Berg, René van Oostrum, and Mark Overmars. Simple traversal of a subdivision without extra storage. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages C5-C6, 1996.
- Olivier Devillers. The Delaunay hierarchy. http://www- sop.inria.fr/prisme/logiciel/del-hierarchy/.
- Olivier Devillers. Improved incremental randomized Delaunay triangula- tion. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 106-115, 1998.
- Olivier Devillers, Giuseppe Liotta, Franco P. Preparata, and Roberto Tamassia. Checking the convexity of polytopes and the planarity of subdi- visions. Comput. Geom. Theory Appl., 11:187-208, 1998.
- Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a trian- gulation. In Proc. 17th Annual ACM Symposium on Computational Geom- etry, pages 106-114, 2001.
- Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a trian- gulation. Research Report 4120, INRIA, 2001.
- R. A. Dwyer. A simple divide-and-conquer algorithm for computing De- launay triangulations in O(n log log n) expected time. In Proc. 2nd Annu. ACM Sympos. Comput. Geom., pages 276-284, 1986.
- R. A. Dwyer. A faster divide-and-conquer algorithm for constructing De- launay triangulations. Algorithmica, 2:137-151, 1987.
- H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Dis- crete Comput. Geom., 1:25-44, 1986.
- H. Edelsbrunner and T. S. Tan. An upper bound for conforming Delaunay triangulations. Discrete Comput. Geom., 10(2):197-213, 1993.
- A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the design of CGAL, the Computational Geometry Algorithms Library. Research Report 3407, INRIA, 1998.
- Eyal Flato, Dan Halperin, Iddo Hanniel, and Oren Nechushtan. The design and implementation of planar maps in CGAL. In Abstracts 15th European Workshop Comput. Geom., pages 169-172. INRIA Sophia-Antipolis, 1999.
- E. G. Flekky, P. V. Coveney, and G. De Fabritiis. Foundations of dissipative particle dynamics. Phys. Rev. E, 62:2140, 2000.
- Paul-Louis George and Houman Borouchaki. Triangulation de Delaunay et maillage. Applications aux éléments finis. Hermes, Paris, France, 1997.
- Torbjörn Granlund. GMP, The GNU Multiple Precision Arithmetic Li- brary, 2.0.2 edition, 1996. http://www.swox.com/gmp/.
- Leonidas J. Guibas and J. Stolfi. Primitives for the manipulation of gen- eral subdivisions and the computation of Voronoi diagrams. ACM Trans. Graph., 4(2):74-123, April 1985.
- Frank Hoffmann, Klaus Kriegel, and Carola Wenk. A geometric approach to protein identification in 2D electrophoretic gel images. In Abstracts 15th European Workshop Comput. Geom., pages 173-174. INRIA Sophia- Antipolis, 1999.
- L. Kettner. Using generic programming for designing a data structure for polyhedral surfaces. Comput. Geom. Theory Appl., 13:65-90, 1999.
- LEDA. http://www.mpi-sb.mpg.de/LEDA/, Version 4.0.
- P. Lienhardt. N-dimensional generalized combinatorial maps and cellular quasi-manifolds. Internat. J. Comput. Geom. Appl., 4(3):275-324, 1994.
- Dani Lischinski. Graphics gems IV. ftp://wuarchive.wustl.edu/graphics/graphics/books/graphics-gems/.
- Ernst P. Mücke, Isaac Saias, and Binhai Zhu. Fast randomized point lo- cation without preprocessing in two-and three-dimensional Delaunay tri- angulations. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 274-283, 1996.
- K. Mulmuley. Randomized multidimensional search trees: Dynamic sam- pling. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 121-131, 1991.
- Michael Murphy, David M. Mount, and Carl W. Gable. A point-placement strategy for conforming Delaunay tetrahedralization. In Proc. 11th ACM- SIAM Sympos. Discrete Algorithms, pages 67-74, 2000.
- Sylvain Pion. De la géométrie algorithmique au calcul géométrique. Thèse de doctorat en sciences, université de Nice-Sophia Antipolis, France, 1999.
- Sylvain Pion. Interval arithmetic: An efficient implementation and an application to computational geometry. In Workshop on Applications of Interval Analysis to systems and Control, pages 99-110, 1999.
- E. Schnhardt. ber die zerlegung von dreieckspolyedern in tetraeder. Math- ematische Annalen, 98:309-312, 1928.
- J. R. Shewchuk. Triangle: Engineering a 2d quality mesh generator and Delaunay triangulator. In First Workshop on Applied Computational Ge- ometry. Association for Computing Machinery, May 1996.
- Jonathan Shewchuk. Triangle. A two-dimensional quality mesh generator and Delaunay triangulator. http://www.cs.cmu.edu/˜quake/triangle.html, Version 1.3.
- Jonathan R. Shewchuk. Robust adaptive floating-point geometric predi- cates. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 141-150, 1996.
- Jonathan R. Shewchuk. A condition guaranteeing the existence of higher- dimensional constrained Delaunay triangulations. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 76-85, 1998.
- Remco C. Veltkamp. Generic programming in CGAL, the Computational Geometry Algorithms Library. In F. Arbab and Ph. Slusallek, editors, Proceedings of the 6th Eurographics Workshop on Programming Paradigms in Graphics, Budapest, Hungary, 8 September 1997, pages 127-138, 1997.