Academia.eduAcademia.edu

Outline

Strained Si CMOS (SS CMOS) technology: opportunities and challenges

2003, Solid-State Electronics

https://doi.org/10.1016/S0038-1101(03)00041-8

Abstract

Strain-induced enhancement of current drive is a promising way to extend the advancement of CMOS performance. Fabrication of strained Si MOSFET has been demonstrated with key elements of modern dayÕs CMOS technology. Significant mobility and current drive enhancements were observed. Recent advancements in the SS devices are summarized, and the challenges in device physics/design issues as well as in materials/process integration are highlighted.

References (26)

  1. Ismail K. Si/SiGe high speed field effect transistors. IEDM Tech Digest 1995:509-12.
  2. Kesan VP, Subbana S, Restle PJ, Tejwani MJ, Aitken JM, Iyer SS, et al. High performance 0.25 mm p-MOSFETs with silicon-germanium channels for 300 K and 77 K operation. IEDM Tech Digest 1991:977-80.
  3. Tezuka T, Sugiyama N, Mizuno T, Takagi S. Novel fully- depleted SiGe-on-insulator p-MOSFETs with high-mobil- ity SiGe surface channels. IEDM Tech Digest 2001:946-8.
  4. Fischetti MV, Laux SE. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J Appl Phys 1994;80(4):2234-52.
  5. Takagi S, Hoyt JL, Welser JJ, Gibbons JF. Comparative study of phonon limited mobility of two dimensional electrons in strained and unstrained Si metal oxide semi- conductor field effect transistors. J Appl Phys 1994;80(3): 1567-77.
  6. Roldan JB, Gamiz F, Lopez-Villanueva JA, Carceller JE. A Monte Carlo study on the electron transport properties of high performance strained Si on relaxed SiGe channel MOSFETs. J Appl Phys 1996;80(9):5121-8.
  7. Formicone GF, Vasileska D, Ferry DK. Transport in the surface channel of strained Si on a relaxed Si 1Àx /Ge x / substrate. Solid State Electron 1997;41(6):879-85.
  8. Oberhuber R, Zandler G, Vogl P. Subband structure and mobility of two dimensional holes in strained Si/SiGe MOSFETÕs. Phys Rev B 1998;58(15):9941-8.
  9. Nayak D, Woo JCS, Park JS, Wang L, MacWilliams KP. High-mobility p-channel metal-oxide-semiconductor field- effect transistor on strained Si. Appl Phys Lett 1993;62: 2853-5.
  10. Welser J, Hoyt JL, Takagi S, Gibbons JF. Strain depen- dence of the performance enhancement in strained-Si n- MOSFETs. IEDM Tech Digest 1994:947-50.
  11. Nayak DK, Goto K, Yutani A, Murota J, Shiraki Y. High mobility strained Si PMOSFETÕs. IEEE Trans Electron Dev 1996;43(10):1709-16.
  12. Rim K, Welser J, Hoyt JL, Gibbons JF. Enhanced hole mobilities in surface channel strained Si p MOSFETs. IEDM Tech Digest 1995:517-20.
  13. Rim K, Hoyt JL, Gibbons JF. Transconductance enhance- ment in deep submicron strained Si n MOSFETs. IEDM Tech Digest 1998:707-10.
  14. Mizuno T, Takagi S, Sugiyama N, Koga J, Tezuka T, Usuda K, et al. High performance strained Si p MOSFETs on SiGe on insulator substrates fabricated by SIMOX technology. IEDM Tech Digest 1999:934-7.
  15. Mizuno T, Sugiyama N, Satake H, Takagi S, Advanced SOI MOSFETs with strained Si channel for high speed CMOS electron/hole mobility enhancement. Symposium on VLSI Technology, 2000. p. 210-1.
  16. Rim K, Koester S, Hargrove M, Chu J, Mooney PM, Ott J, et al. Strained Si NMOSFETs for high performance CMOS technology. Symposium on VLSI Technology, 2001. p. 59-60.
  17. Huang LJ, Chu JO, Goma S, DÕEmic CP, Koester SJ, Canaperi DF, et al. Carrier mobility enhancement in strained Si on insulator fabricated by wafer bonding. Symposium on VLSI Technology, 2001. p. 57-8.
  18. Sugii N, Hisamoto D, Washio K, Yokoyama N, Kimura S. Enhanced performance of strained-Si MOSFETs on CMP SiGe virtual substrate. IEDM Tech Digest 2001: 737-40.
  19. Takagi S, Toriumi A, Iwase M, Tango H. On the universality of inversion layer mobility in Si MOSFETs: Part I--Effects of substrate impurity concentration. IEEE Trans Electron Dev 1994;41(12):2357-69.
  20. Rim K, Hoyt JL, Gibbons JF. Fabrication and analysis of deep submicron strained Si nMOSFETÕs. IEEE Trans Electron Dev 1994;47(8):1406-13.
  21. Jenkins K, Rim K. Measurement of the effect of self- heating in strained-silicon MOSFETs. IEEE Electron Dev Lett 2002;23(6):360-2.
  22. LeGoues FK, Meyerson BS, Morar JF, Kirchner PD. Mechanism and conditions for anomalous strain relaxation in graded thin films and superlattices. J Appl Phys 1992;71:4230-43.
  23. Fitzgerald EA, Xie YH, Monroe D, Silverman PJ, Kuo JM, Kortan AR, et al. Relaxed GeSi structures for III-V integration with Si and high mobility two-dimensional electron gases in Si. J Vac Sci Technol B 1992;10:1807.
  24. Mooney PM et al. Mat Res Symp Proc Fall, 2001.
  25. Koester SJ, Rim K, Chu JO, Mooney PM, Ott JA, Hargrove MA. Effect of thermal processing on strain relaxation and interdiffusion in Si/SiGe heterostructures studied using Raman spectroscopy. Appl Phys Lett 2002; 79(14):2148-50.
  26. Tezuka T, Sugiyama N, Mizuno T, Suzuki M, Takagi S. A novel fabrication technique of ultrathin and relaxed SiGe buffer layers with high Ge fraction for sub 100 nm strained silicon on insulator MOSFETs. Jpn J Appl Phys 2001; 40(4B):2866-75.