Skyrmions and Their Sizes in Helimagnets
2011, arXiv preprint arXiv:1112.5991
Abstract
Skyrmion gases and lattices in helimagnets are studied, and the size of a Skyrmion in various phases is estimated. For isolated Skyrmions, the long distance tail is related to the magnetization correlation functions and exhibits power-law decay if the phase spontaneously breaks a continuous symmetry, but decays exponentially otherwise. The size of a Skyrmion is found to depend on a number of length scales. These length scales are related to the strength of Dzyaloshinskii-Moriya (DM) interaction, the thermal correlation lengths, and the strength of the external magnetic field. An Abrikosov lattice of Skyrmions is found to exist near the helimagnetic phase boundary, and the core-to-core distance is estimated.
References (38)
- T. H. R. Skyrme, Proc. Roy. Soc. London A 260, 127 (1961)
- H. A. Fertig, L. Brey, R. Côté, A. H. MacDonald, A. Karl- hede, and S. L. Sondhi, Phys. Rev. B 55, 10671 (1997)
- C. Timm, S. M. Girvin, and H. A. Fertig, Phys. Rev. B 58, 10634 (1998), cond-mat/9804057
- Q. Li, J. Toner, and D. Belitz, Phys. Rev. B 79, 014517 (2009), arXiv:0711.4154
- T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998)
- L. S. Leslie, A. Hansen, K. C. Wright, B. M. Deutsch, and N. P. Bigelow, Phys. Rev. Lett. 103, 250401 (2009)
- C. Thessieu, C. Pfleiferer, A. N. Stepanov, and J. Flouquet, J. Phys.: Condens. Matter 9, 6677 (1997)
- A. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009), arXiv:0902.1968
- C. Pfleiderer, A. Neubauer, S. Mühlbauer, F. Jonietz, M. Janoschek, S. Legl, R. Ritz, W. Münzer, C. Franz, P. G. Niklowitz, T. Keller, R. Georgii, P. Böni, B. Binz, and A. Rosch, J. Phys.: Condens. Matter 21, 279801 (2009)
- X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature 465, 901 (2010)
- P. Bak and M. H. Jensen, J. Phys. C: Solid State Phys. 13, L881 (1980)
- M. L. Plumer and M. B. Walker, J. Phys. C: Solid State Phys. 14, 4689 (1981)
- I. E. Dzyaloshinski, J. Phys. Chem. Solids 4, 241 (1958)
- T. Moriya, Phys. Rev. 120, 91 (1960)
- K.-Y. Ho, T. R. Kirkpatrick, Y. Sang, and D. Belitz, Phys. Rev. B 82, 134427 (2010), arXiv:1008.0134
- A. A. Belavin and A. M. Polyakov, Sov. Phys. JETP 22, 245 (1975)
- A. Abanov and V. L. Pokrovsky, Phys. Rev. B 58, R8889 (1998)
- M. Ezawa, Phys. Rev. Lett. 105, 197202 (2010)
- A. N. Bogdanov and D. A. Yablonskiȋ, Sov. Phys. JETP 68, 101 (1989)
- A. Bogdanov and A. Hubert, J. Mag. Mag. Mater. 138, 255 (1994)
- A. Bogdanov, JETP Letters 62, 231 (1995)
- U. K. Röβler, A. N. Bogdanov, and C. Pfleiderer, Nature 442, 797 (2006)
- A. B. Butenko, A. A. Leonov, U. K. Röβler, and A. N. Bog- danov, Phys. Rev. B 82, 052403 (2010), arXiv:0904.4842
- U. K. Röβler, A. A. Leonov, and A. N. Bogdanov, J. Phys.: Conf. Ser. 303, 012105 (2011), arXiv: 1009.4849
- K. Everschor, M. Garst, R. A. Duine, and A. Rosch, Phys. Rev. B 84, 064401 (2011)
- A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957)
- J. H. Han, J. Zang, Z. Yang, J.-H. Park, and N. Nagaosa, Phys. Rev. B 82, 094429 (2010), arXiv:1006.3973
- T. R. Kirkpatrick and D. Belitz, Phys. Rev. Lett. 104, 256404 (2010), arXiv:1003.4809
- S. K. Ma, Modern Theory of Critical Phenomena (Ben- jamin/Cummings, Reading, MA, 1976)
- D. Belitz and T. R. Kirkpatrick, Phys. Rev. B 81, 184419 (2010)
- T. C. Lubensky, Phys. Rev. A 6, 452 (1972)
- R. P. Feynman, A. R. Hibbs, and D. F. Styer, Quantum Mechanics and Path Integrals (Dover, Mineola, NY, NY, 2010)
- R. Rajaraman, Solitons and Instantons (Elsevier, New York, NY, 1987)
- P. G. de Gennes and J. Prost, The Physics of Liquid Crys- tals (Oxford University Press, New York, NY, 1993)
- C. Pfleiderer and A. Rosch, Nature 465, 880 (2010)
- D. Forster, Hydrodynamic Fluctuations, Broken Symme- try, and Correlation Functions, Advanced Book Classics (Perseus, 1989)
- D. Belitz, T. R. Kirkpatrick, and A. Rosch, Phys. Rev. B 73, 054431 (2006), cond-mat/0510444
- We do not consider the case for H = 0 because, while it does have a partial differential equation for δmG, it is ther-