Academia.eduAcademia.edu

Outline

Generalization of human grasping for multi-fingered robot hands

2012, IEEE International Conference on Intelligent Robots and Systems

Abstract

Multi-fingered robot grasping is a challenging problem that is difficult to tackle using hand-coded programs. In this paper we present an imitation learning approach for learning and generalizing grasping skills based on human demonstrations. To this end, we split the task of synthesizing a grasping motion into three parts: (1) learning efficient grasp representations from human demonstrations, (2) warping contact points onto new objects, and (3) optimizing and executing the reach-and-grasp movements. We learn low-dimensional latent grasp spaces for different grasp types, which form the basis for a novel extension to dynamic motor primitives. These latent-space dynamic motor primitives are used to synthesize entire reach-and-grasp movements. We evaluated our method on a real humanoid robot. The results of the experiment demonstrate the robustness and versatility of our approach.

References (30)

  1. W. Abend, E. Bizzi, and P. Morasso. Human arm trajectory formation. Brain : a journal of neurology, 105(Pt 2):331-348, jun 1982.
  2. M. Arbib, T. Iberall, and D. Lyons. Coordinated control programs for movements of the hand. Experimental brain research, pages 111-129, 1985.
  3. H. Ben Amor. Imitation learning of motor skills for synthetic hu- manoids. PhD Thesis, Technische Universitaet Bergakademie Freiberg, Freiberg, Germany, 2011.
  4. H. Ben Amor, G. Heumer, B. Jung, and A. Vitzthum. Grasp synthesis from low-dimensional probabilistic grasp models. Comput. Animat. Virtual Worlds, 19(3-4):445-454, sep 2008.
  5. C. Borst, T. Wimbock, F. Schmidt, M. Fuchs, B. Brunner, F. Zacharias, P. R. Giordano, R. Konietschke, W. Sepp, S. Fuchs, C. Rink, A. Albu- Schaffer, and G. Hirzinger. Rollin' justin -mobile platform with variable base. In Robotics and Automation, 2009. ICRA '09. IEEE International Conference on, pages 1597 -1598, may 2009.
  6. A. Boularias, O. Kroemer, and J. Peters. Learning robot grasping from 3-d images with markov random fields. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2011, pages 1548-1553, 2011.
  7. S Chieffi and M Gentilucci. Coordination between the transport and the grasp components during prehension movements. Experimental Brain Research, pages 471-477, 1993.
  8. M. T. Ciocarlie and P. K. Allen. Hand posture subspaces for dexterous robotic grasping. Int. J. Rob. Res., 28(7):851-867, July 2009.
  9. K. Dautenhahn and C. L. Nehaniv. Imitation in Animals and Artifacts. MIT Press, Campridge, 2002.
  10. G. Heumer. Simulation, Erfassung und Analyse direkter Objekt- manipulationen in virtuellen Umgebungen. PhD Thesis, Technische Universitaet Bergakademie Freiberg, Freiberg, Germany, 2011.
  11. U. Hillenbrand. Non-parametric 3d shape warping. In Pattern Recognition (ICPR), 2010 20th International Conference on, pages 2656 -2659, 2010.
  12. U. Hillenbrand and A. Fuchs. An experimental study of four variants of pose clustering from dense range data. Computer Vision and Image Understanding, 115(10):1427 -1448, 2011.
  13. U. Hillenbrand and M. A. Roa. Transferring functional grasps through contact warping and local replanning. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2012.
  14. A.J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear dynamical systems in humanoid robots. In Robotics and Automation, 2002. Proceedings. ICRA '02. IEEE International Conference on, volume 2, pages 1398 -1403, 2002.
  15. M Jeannerod. The timing of natural prehension movements. Journal of Motor Behavior, 16(3):235-254, 1984.
  16. M. Jeannerod. Perspectives of Motor Behaviour and Its Neural Basis, chapter Grasping Objects: The Hand as a Pattern Recognition Device. 1997.
  17. M. Jeannerod. Sensorimotor Control of Grasping: Physiology and Pathophysiology, chapter The study of hand movements during grasp- ing. A historical perspective. Cambridge University Press, 2009.
  18. J. Kober, B. Mohler, and J. Peters. Learning perceptual coupling for motor primitives. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages 834 -839, sept. 2008.
  19. R. N. Lemon. Neural control of dexterity: what has been achieved? Exp Brain Res, 128:6-12+, 1999.
  20. C. R. Mason, J. E. Gomez, and T. J. Ebner. Hand Synergies During Reach-to-Grasp. Journal of Neurophysiology, 86(6):2896- 2910, December 2001.
  21. J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and M. Kawato. Learning from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems, 47:79?-91, 2004.
  22. M. Saleh, K. Takahashi, and N.G. Hatsopoulos. Encoding of coordi- nated reach and grasp trajectories in primary motor cortex. J Neurosci, 32(4):1220-32, 2012.
  23. M. Santello, M. Flanders, and J. F. Soechting. Postural Hand Synergies for Tool Use. The Journal of Neuroscience, 18(23):10105-10115, December 1998.
  24. M. Santello and J. F. Soechting. Gradual molding of the hand to object contours. Journal of neurophysiology, 79(3):1307-1320, March 1998.
  25. A. Saxena, J. Driemeyer, and A. Y. Ng. Robotic grasping of novel objects using vision. Int. J. Rob. Res., 27(2):157-173, feb 2008.
  26. M H Schieber. How might the motor cortex individuate movements? Trends Neurosci, 13(11):440-5, 1990.
  27. R. Suárez, M. Roa, and J. Cornella. Grasp quality measures. Technical report, Technical University of Catalonia, 2006.
  28. Johan Tegin, Staffan Ekvall, Danica Kragic, Jan Wikander, and Boyko Iliev. Demonstration-based learning and control for automatic grasp- ing. Intelligent Service Robotics, 2009.
  29. M. Toussaint and C. Goerick. A bayesian view on motor control and planning. In From Motor Learning to Interaction Learning in Robots, pages 227-252. 2010.
  30. R. J. Vanderbei. Linear Programming: Foundations and Extensions. Springer, 2001.