Academia.eduAcademia.edu

Outline

A Probabilistic Approach to Socio-Geographic Reality Mining

2011, ACM SIGMultimedia Records

Abstract

As we live our daily lives, our surroundings know about it. Our surroundings consist of people, but also our electronic devices. Our mobile phones, for example, continuously sense our movements and interactions. This socio-geographic data could be continuously captured by hundreds of millions of people around the world and promises to reveal important behavioral clues about humans in a manner never before possible. Mining patterns of human behavior from large-scale mobile phone data has deep potential impact ...

References (109)

  1. Akoush, S. and Sameh, A. (2007). Mobile user movement prediction using bayesian learning for neural networks. In International Wireless Communications and Mobile Computing Conference (ACM IWCMC), pages 191-196, Honolulu, Hawaii, USA.
  2. Asuncion, A., Welling, M., Smyth, P., and Teh, Y. W. (2009). On smoothing and inference for topic models. In Proc. of the Conference on Uncertainty in Artificial Intelligence (UAI), Montreal, Canada.
  3. Bernard, H., Killworth, P., Kronenfeld, D., and Sailer, L. (1984). The problem of informant accuracy: The validity of retrospective data. Annual Reviews in Anthropology.
  4. Bimbot, F., Pieraccini, R., Levin, E., and Atal, B. (1995). Variable-length sequence modeling: multi- grams. IEEE Signal Processing Letters, 2(6), 111-113.
  5. Bishop, C. M. (2007). Pattern Recognition and Machine Learning (Information Science and Statis- tics). Springer, 1st ed. 2006. corr. 2nd printing edition.
  6. Blei, D. and Lafferty, J. (2006). Dynamic topic models. In Proc. of the 23rd International Conference on Machine Learning (ICML), Pittsburgh, Pennsylvania, USA.
  7. Blei, D. and Lafferty, J. (2007). A correlated topic model of science. Annals of Applied Statistics, 1(1), 17-35.
  8. Blei, D. and Lafferty, J. (2009). Topic models. In A. Srivastava and M. Sahami, editors, Text Mining: Theory and Applications. Taylor and Francis.
  9. Blei, D. and McAuliffe, J. (2007). Supervised topic models. In Advances in Neural Information Processing Systems (NIPS), Vancouver, Canada.
  10. Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993-1022.
  11. Blei, D. M., Griffiths, T. L., Jordan, M. I., and Tenenbaum, J. B. (2004). Hierarchical topic models and the nested chinese restaurant process. In Advances in Neural Information Processing Systems (NIPS), Vancouver, Canada.
  12. Brewer, D. and Webster, C. (2000). Forgetting of friends and its effects on measuring friendship networks. Social Networks, 21(4), 361 -373.
  13. Candia, J., Gonzalez, M., Wang, P., Schoenharl, T., Madey, G., and Barabasi, A.-L. (2008). Un- covering individual and collective human dynamics from mobile phone records. Journal of Physics A: Mathematical and Theoretical , 41(22), 224015+.
  14. Choudhury, T. (2003). Sensing and Modeling Human Networks. Ph.D. thesis, M.I.T.
  15. Choudhury, T. and Basu, S. (2004). Modeling conversational dynamics as a mixed memory markov process. In Advances in Neural Information Processing Systems (NIPS), Vancouver, Canada.
  16. Choudhury, T. and Pentland, A. (2003). Sensing and modeling human networks using the sociometer. In IEEE International Symposium on Wearable Computers (ISWC), pages 216-, Washington, USA.
  17. Choudhury, T., Philipose, M., Wyatt, D., and Lester, J. (2006). Towards activity databases: Using sensors and statistical models to summarize people's lives. In IEEE Data Eng. Bull , pages 49-58.
  18. Chronis, L., Madan, A., and Pentland, A. (2009). Socialcircuits: The art of using mobile phones for modeling personal interactions. In ICMI-MLMI Workshop on Multimodal Sensor-Based Systems and Mobile Phones for Social Computing, Cambridge, Massachusetts, USA.
  19. Church, K. and Gale, W. (1991). Concordances for parallel text. In Proc. of the 7th Annual Conf. of the UW Centre for the New OED and Text Research, pages 40-62.
  20. Davis, M., Van House, N., Towle, J., King, S., Ahern, S., Burgener, C., Perkel, D., Finn, M., Viswanathan, V., and Rothenberg, M. (2005). MMM2: mobile media metadata for media sharing. In Extended Abstracts on Human Factors in Computing Systems (CHI), pages 1335-1338, Portland, Oregan, USA.
  21. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the Amercian Society for Information Science, 41(6), 391-407.
  22. Duda, R., Hart, P., and Stork, D. (2000). Pattern Classification (2nd Ed.). Wiley-Interscience.
  23. Dunning, T. E. (1993). Accurate methods for the statistics of surprise and coincidence. Computa- tional Linguistics, 19(1), 61-74.
  24. Duong, T. V., Bui, H. H., Phung, D. Q., and Venkatesh, S. (2005). Activity recognition and abnor- mality detection with the switching hidden semi-markov model. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) -Volume 1 , pages 838-845, Washington, USA.
  25. Eagle, N. and Pentland, A. (2009). Eigenbehaviors: Identifying structure in routine. Behavioral Ecology and Sociobiology, 63(7), 1057-1066.
  26. Eagle, N., Pentland, A., and Lazer, D. (2009). Inferring social network structure using mobile phone data. Proc. of the National Academy of Sciences (PNAS), 106(36), 15274-15278.
  27. Eagle, N., Macy, M., and Claxton, R. (2010). Network diversity and economic development. Science, 328(5981), 1029-1031.
  28. Erosheva, E., Fienberg, S., and Lafferty, J. (2004). Mixed-membership models of scientific publica- tions. Proc. of the National Academy of Sciences (PNAS USA), 101(Suppl 1), 5220-5227.
  29. Farrahi, K. and Gatica-Perez, D. (2008a). Daily routine classification from mobile phone data. In 5th Joint Workshop on Machine Learning and Multimodal Interaction (MLMI), Utrecht, Netherlands.
  30. Farrahi, K. and Gatica-Perez, D. (2008b). Discovering human routines from cell phone data with topic models. In IEEE International Symposium on Wearable Computers (ISWC), Pittsburgh, Penn- sylvania, USA.
  31. Farrahi, K. and Gatica-Perez, D. (2008c). What did you do today? Discovering daily routines from large-scale mobile data. In ACM Int. Conf. on Multimedia (ACM MM), Vancouver, Canada.
  32. Farrahi, K. and Gatica-Perez, D. (2009). Learning and predicting multimodal daily life patterns from cell phones. In ICMI-MLMI , Cambridge, Massachusetts USA.
  33. Farrahi, K. and Gatica-Perez, D. (2010a). Mining human location-routines using a multi-level topic model. In Socialcom Symposium on Social Intelligence and Networking (Socialcom SIN-10).
  34. Farrahi, K. and Gatica-Perez, D. (2010b). Probabilistic mining of socio-geographic routines from mobile phone data. IEEE Journal of Selected Topics in Signal Processing (J-STSP), 4(4), 746-755.
  35. Farrahi, K. and Gatica-Perez, D. (2011). Discovering routines from large-scale human locations using probabilistic topic models. ACM Transactions on Intelligent Systems and Technology, Special Issue on Intelligent Systems for Activity Recognition, 2(1), 3:1-3:27.
  36. Fay, N., Garrod, S., and Carletta, J. (2000). Group discussion as interactive dialogue or as serial monologue: The influence of group size. Psychological Science, English, 481-486+.
  37. Gonzalez, M. C., Hidalgo, C. A., and Barabasi, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779-782.
  38. Griffiths, T. L. and Steyvers, M. (2004). Finding scientific topics. Proc. of the National Academy of Sciences (PNAS USA), 101 Suppl 1, 5228-5235.
  39. Guo, F., Hanneke, S., Fu, W., and Xing, E. P. (2007). Recovering temporally rewiring networks: A model-based approach. In Proc. of the International Conference on Machine Learning (ICML), Oregan, USA.
  40. Hamid, R., Maddi, S., Johnson, A., Bobick, A., Essa, I., and Isbell, C. (2005). Unsupervised activity discovery and characterization from event-streams. In Proc. of the Conference on Uncertainty in Artificial Intelligence (UAI), Edinburgh, Scotland.
  41. Hamid, R., Maddi, S., Bobick, A. F., and Essa, I. A. (2007). Structure from statistics -unsupervised activity analysis using suffix trees. In IEEE International Conference on Computer Vision (ICCV), pages 1-8, Rio de Janeiro, Brazil.
  42. Heinrich, G. (2008). Parameter estimation for text analysis,. Technical report, University of Leipzig.
  43. Hidalgo, C. A. and Rodriguez-Sickert, C. (2008). The dynamics of a mobile phone network. Physica A, 387, 3017-3024.
  44. Hightower, J., Consolvo, S., Lamarca, A., Smith, I., and Hughes, J. (2005). Learning and recognizing the places we go. In Ubiquitous Computing (UbiComp), pages 159-176, Tokyo, Japan.
  45. Hofmann, T. (1999). Probabilistic latent semantic analysis. In Proc. of the Conference on Uncertainty in Artificial Intelligence (UAI), pages 289-296, Stockholm, Sweden.
  46. Huckfeldt, R. and Sprague, J. (1991). Discussant Effects on Vote Choice: Intimacy, Structure and Interdependence. The Journal of Politics, 53, 122-158.
  47. Hunter, D. R. and Handcock, M. S. (2006). Inference in curved exponential family models for networks. Journal of Computational and Graphical Statistics, 15, 565-583.
  48. Huynh, T., Fritz, M., and Schiele, B. (2008). Discovery of activity patterns using topic models. In Ubiquitous computing (UbiComp), pages 10-19, Seoul, Korea.
  49. Intille, S. S., Larson, K., Tapia, E. M., Beaudin, J. S., Kaushik, P., Nawyn, J., and Rockinson, R. (2006). Using a live-in laboratory for ubiquitous computing research. In Pervasive Computing, pages 349-365.
  50. Jebara, T. (2008). http://www.sensenetworks.com. Sense Networks.
  51. Justeson, J. S. and Katz, S. M. (1995). Technical terminology: some linguistic properties and an algorithm for identification in text. Natural Language Engineering, 1.
  52. Kiukkonen, N., Blom, J., Dousse, O., Gatica-Perez, D., and Laurila, J. (2010). Towards rich mobile phone datasets: Lausanne data collection campaign. In Proc. ACM Int. Conf. on Pervasive Services (ICPS), Berlin, Germany.
  53. Krumm, J. and Horvitz, E. (2006). Predestination: Inferring destinations from partial trajectories. In Ubiquitous Computing (UbiComp), California, USA.
  54. Laerhoven, K. V., Borazio, M., Kilian, D., and Schiele, B. (2008). Sustained logging and discrim- ination of sleep postures with low-level, wrist-worn sensors. In IEEE International Symposium on Wearable Computers (ISWC), pages 69-76, Pittsburgh, Pennsylvania, USA.
  55. Larson, K. and Intille, S. (2002). http://architecture.mit.edu/house n/data/placelab/placelab.htm. Placelab website.
  56. Lazer, D., Rubineau, B., Katz, N., Chetkovich, C., and Neblo, M. A. (2008). Networks and political attitudes: Structure, influence, and co-evolution. Working paper series, Harvard University.
  57. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., and Van Alstyne, M. (2009). Computational social science. Science, 323(5915), 721-723.
  58. Letchner, J., Fox, D., and LaMarca, A. (2005). Large-scale localization from wireless signal strength. In National Conference on Artificial Intelligence (AAAI), pages 15-20, Pittsburgh, Pennsylvania, USA.
  59. Liao, L., Fox, D., and Kautz, H. (2006). Location-based activity recognition. In Advances in Neural Information Processing Systems (NIPS), pages 787-794, Vancouver, Canada.
  60. Loecher, M. and Jebara, T. (2009). CitySense: Multiscale space time clustering of gps points and trajectories. In Proc. of the Joint Statistical Meeting.
  61. Logan, B., Healey, J., Philipose, M., Tapia, E. M., and Intille, S. S. (2007). A long-term evaluation of sensing modalities for activity recognition. In Ubiquitous Computing (UbiComp), volume 4717 of Lecture Notes in Computer Science, pages 483-500. Springer.
  62. Lu, H., Pan, W., Lane, N. D., Choudhury, T., and Campbell, A. T. (2009). Soundsense: scalable sound sensing for people-centric applications on mobile phones. In Proc. of the 7th International Conference on Mobile Systems, Applications, and Services (MobiSys), pages 165-178, New York, NY, USA.
  63. Madan, A. and Pentland, A. (2006). Vibefones: Socially aware mobile phones. In IEEE International Symposium on Wearable Computers (ISWC), Montreux, Switzerland.
  64. Madan, A., Cebrián, M., Lazer, D., and Pentland, A. (2010a). Social sensing for epidemiological behavior change. In Ubiquitous Computing (UbiComp), pages 291-300, Copenhagen, Denmark.
  65. Madan, A., Moturu, S., Lazer, D., and Pentland, A. (2010b). Social sensing: Obesity, unhealthy eating and exercise in face-to-face networks. In Proc. of ACM Wireless Health, San Diego, USA.
  66. Madan, A., Farrahi, K., Gatica-Perez, D., and Pentland, A. (2011). Pervasive sensing to model political opinions in face-to-face networks. In Pervasive, San Francisco, USA.
  67. Mccallum, A., Corrada-emmanuel, A., and Wang, X. (2004). The author-recipient-topic model for topic and role discovery in social networks: Experiments with enron and academic email. Technical report, University of Massachusetts Amherst.
  68. McCowan, I., Gatica-Perez, D., Bengio, S., Lathoud, G., Barnard, M., and Zhang, D. (2005). Auto- matic analysis of multimodal group actions in meetings. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 27(3), 305-317.
  69. Miluzzo, E., Lane, N. D., Eisenman, S. B., and Campbell, A. T. (2007). Cenceme: injecting sensing presence into social networking applications. In Proc. of the 2nd European conference on Smart sensing and context, EuroSSC'07, pages 1-28, Berlin, Heidelberg. Springer-Verlag.
  70. Monay, F. and Gatica-Perez, D. (2007). Modeling semantic aspects for cross-media image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 29(10), 1802-1817.
  71. Nallapati, R. and Cohen, W. (2008). Link-plsa-lda: A new unsupervised model for topics and influence in blogs. In International AAAI Conference on Weblogs and Social Media (ICWSM), Seattle, Washington, USA.
  72. Niebles, J., Wang, H., and Fei-Fei, L. (2008). Unsupervised learning of human action categories using spatial-temporal words. International Journal of Computer Vision (IJCV), 79, 299-318.
  73. Olguin, D., Waber, B., Kim, T., Mohan, A., Ara, K., and Pentland, A. (2009). Sensible organizations: Technology and methodology for automatically measuring organizational behavior. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 39(1), 43-55.
  74. Olguin Olguin, D., Gloor, P., and Pentland, A. (2009). Wearable sensors for pervasive healthcare management. PCT Healthcare.
  75. Otsason, V., Varshavsky, A., Lamarca, A., and de Lara, E. (2005). Accurate gsm indoor localization. In Ubiquitous Computing (UbiComp), pages 141-158. Springer Berlin / Heidelberg.
  76. Patel, S., Kientz, J., Hayes, G., Bhat, S., and Abowd, G. (2006). Farther than you may think: An empirical investigation of the proximity of users to their mobile phones. In Proc. of Ubicomp, pages 123-140, Orange County, California, USA.
  77. Patterson, D., Liao, L., Fox, D., and Kautz, H. (2003). Inferring high-level behavior from low-level sensors. In Ubiquitous Computing (UbiComp), pages 73-89, Seattle, USA.
  78. Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155(2), 945-959.
  79. Quelhas, P., Monay, F., Odobez, J.-M., Gatica-Perez, D., and Tuytelaars, T. (2007). A thousand words in a scene. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 29(9), 1575-89.
  80. Reddy, S., Burke, J., Estrin, D., Hansen, M., and Strivastava, M. (2008). Using mobile phones to determine transportation mode. In IEEE International Symposium on Wearable Computers (ISWC), Pittsburgh, Pennsylvania, USA.
  81. Robins, G., Snijders, T., Wang, P., Handcock, M., and Pattison, P. (2007). Recent developments in exponential random graph (p*) models for social networks. Social Networks, 29(2), 192-215.
  82. Rosen-Zvi, M., Griffiths, T., Steyvers, M., and Smyth, P. (2004). The author-topic model for authors and documents. In Proc. of the Conference on Uncertainty in Artificial Intelligence (UAI), pages 487- 494, Arlington, USA.
  83. Smadja, F. (1993). Retrieving collocations from text: Xtract. Computational Linguistics, 19.
  84. Sohn, T., Varshavsky, A., Lamarca, A., Chen, M., Choudhury, T., Smith, I., Consolvo, S., Hightower, J., Griswold, W., and de Lara, E. (2006). Mobility detection using everyday gsm traces. In Ubiquitous Computing (UbiComp), pages 212-224, California, USA.
  85. Steyvers, M., Smyth, P., Rosen-Zvi, M., and Griffiths, T. (2004). Probabilistic author-topic models for information discovery. In International Conference on Knowledge Discovery and Data Mining (ACM SIGKDD), pages 306-315, New York, USA.
  86. Tapia, E. M., Intille, S. S., and Larson, K. (2004). Activity recognition in the home setting using simple and ubiquitous sensors. In A. Ferscha and F. Mattern, editors, Pervasive Computing, volume 3001 of Lecture Notes in Computer Science, pages 158-175. Springer Berlin / Heidelberg.
  87. Tapia, E. M., Intille, S. S., Haskell, W., Larson, K., Wright, J., King, A., and Friedman, R. (2007). Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart monitor. In IEEE International Symposium on Wearable Computers (ISWC), Boston, USA.
  88. Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical dirichlet processes. Journal of the American Statistical Association, 101(476), 1566-1581.
  89. Teh, Y. W., Newman, D., and Welling, M. (2007). A collapsed variational Bayesian inference algo- rithm for latent Dirichlet allocation. In Advances in Neural Information Processing Systems (NIPS), Vancouver, Canada.
  90. Wallach, H. (2006). Topic modeling: beyond bag-of-words. In Proc. of the International Conference on Machine Learning (ICML), Pittsburgh, Pennsylvania, USA.
  91. Wang, P., Gonzalez, M. C., Hidalgo, C. A., and Barabasi, A.-L. (2009a). Understanding the spreading patterns of mobile phone viruses. Science, 324(5930), 1071-1076.
  92. Wang, X., Mohanty, N., and Mccallum, A. (2005). Group and topic discovery from relations and text. In International Conference on Knowledge Discovery and Data Mining (ACM SIGKDD) Workshop on Link Discovery, Chicago, USA.
  93. Wang, X., McCallum, A., and Wei, X. (2007). Topical n-grams: Phrase and topic discovery, with an application to information retrieval. In IEEE International Conference on Data Mining (ICDM), pages 697-702, Washington, USA.
  94. Wang, X., Ma, X., and Grimson, W. E. L. (2009b). Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 31(3), 539-555.
  95. Wesolowski, A. and Eagle, N. (2010). Parameterizing the dynamics of slums. In AAAI Spring Symposium on Artificial Intelligence for Development (AI-D).
  96. Wojek, C., Nickel, K., and Stiefelhagen, R. (2006). Activity recognition and room-level tracking in an office environment. In IEEE International Conf. on Multisensor Fusion and Integration for Intelligent Systems, pages 25-30.
  97. Wren, C., Ivanov, Y., Kaur, I., Leigh, D., Westhues, J., Wren, C. R., Ivanov, Y. A., Kaur, I., Leigh, D., and Westhues, J. (2007). Socialmotion: Measuring the hidden social life of a building. In International Symposium on Location-and Context-Awareness (LoCA 2007), pages 85-102.
  98. Wyatt, D., Choudhury, T., and Kautz, H. (2007). Capturing spontaneous conversation and social dynamics: A privacy sensitive data collection effort. In International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, Hawaii, USA.
  99. Wyatt, D., Choudhury, T., and Bilmes, J. (2010). Discovering long range properties of social net- works with multi-valued time-inhomogeneous models. In National Conference on Artificial Intelligence (AAAI), Atlanta, Georgia, USA.
  100. Yano, T., Cohen, W. W., and Smith, N. A. (2009). Predicting response to political blog posts with topic models. In North American Chapter of the Association for Computational Linguistics -Human Language Technologies (NAACL HLT), pages 477-485. Curriculum Vitae [1] Probabilistic Mining of Socio-Geographic Routines from Mobile Phone Data, K. Farrahi and D. Gatica-Perez, IEEE Journal of Special Topics in Signal Processing, Vol. 4, No. 4, pp.746-755, Aug. 2010.
  101. Discovering Routines from Large-Scale Human Locations using Hierarchical Bayesian Mod- els, K. Farrahi and D. Gatica-Perez, ACM Transactions on Intelligent Systems and Tech- nology, Special Issue on Intelligent Systems for Activity Recognition, Vol. 2, No. 1, Jan. 2011. Publications -Conferences
  102. Pervasive Sensing to Model Political Opinions in Face-to-Face Networks, A. Madan, K. Farrahi, D. Gatica-Perez, and A. Pentland, Pervasive, San Francisco, USA, June 2011.
  103. Mining Human Location-Routines using a Multi-Level Topic Model, K. Farrahi and D. Gatica-Perez, Socialcom Symposium on Social Intelligence and Network- ing (Socialcom SIN-10), Minneapolis, USA, Aug. 2010.
  104. Learning and Predicting Multimodal Daily Life Patterns from Cell Phones, K. Farrahi and D. Gatica-Perez, ICMI-MLMI, Cambridge, USA, Nov. 2009. (Accepted for Oral Presentation as well as Doctoral Symposium poster) .
  105. Discovering Human Routines from Cell Phone Data with Topic Models, K. Farrahi and D. Gatica-Perez, 12th IEEE International Symposium on Wearable Com- puters (ISWC), Pittsburgh, USA, 2008. (Accepted for Oral Presentation)
  106. What Did You Do Today? Discovering Daily Routines from Large-Scale Mobile Data, K. Farrahi and D. Gatica-Perez, ACM International Conference on Multimedia (ACM MM), Vancouver, Canada, 2008.
  107. Daily Routine Classification from Mobile Phone Data, K. Farrahi and D. Gatica-Perez, 5th Joint Workshop on Machine Learning and Multimodal Interaction (MLMI), Utrecht, Netherlands, 2008. (Accepted for Oral Presentation)
  108. Robust Video Transmission using Forward Error Correction over 3G WCDMA Networks, K. Farrahi and T.A. Gulliver, IEEE WoWCaS, Vancouver, Canada, May 2004. (Accepted for Oral Presentation)
  109. Projects April -June Internship, Massachusetts Institute of Technology (MIT). Visiting The Human Dynamics Lab led by Prof. Alex Pentland at the MIT Media Lab. Under- standing the underlying behaviors in human opinion change from Reality Mining data. 1999 -Robot Design and Manufacture, University of Toronto. Designed and built a successful computer-controlled pancake maker. Responsible for the mechani- cal component of the robot. Worked closely with the person in charge of the electrical component. 2001 -4th Year Undergraduate Thesis Project, University of Toronto. Implemented and analyzed a phase interpolator circuit for high-speed multiphase clock generation. Languages English (native), French (intermediate), Persian (advanced)