Academia.eduAcademia.edu

Outline

Interactive Video Search Using Multilevel Indexing

2005, Lecture Notes in Computer Science

https://doi.org/10.1007/11526346_24

Abstract

Large video collections present a unique set of challenges to the search system designer. Text transcripts do not always provide an accurate index to the visual content, and the performance of visually based semantic extraction techniques is often inadequate for search tasks. The searcher must be relied upon to provide detailed judgment of the relevance of specific video segments. We describe a video search system that facilitates this user task by efficiently presenting search results in semantically meaningful units to simplify exploration of query results and query reformulation. We employ a story segmentation system and supporting user interface elements to effectively present query results at the story level. The system was tested in the 2004 TRECVID interactive search evaluations with very positive results.

References (21)

  1. Fonda, D.: Downloading hollywood. Time Magazine 165 (2005)
  2. Kraaij, W., Smeaton, A.F., Over, P., Arlandis, J.: TRECVID 2004 -an introduc- tion (2004) http://www-nlpir.nist.gov/projects/tvpubs/tvpapers04/tv4intro.pdf.
  3. Internet Archive: Moving images archive (1996) http://www.archive.org/movies.
  4. Google: Google Video Search (2005) http://video.google.com.
  5. Yahoo: Yahoo! Video Search (2005) http://video.search.yahoo.com.
  6. Snoek, C., Worring, M., Geusebroek, J., Koelma, D., Seinstra, F.: The MediaMill TRECVID 2004 semantic video search engine. In: TREC Video Retrieval Evalua- tion Online Proceedings. (2004)
  7. Heesch, D., Howarth, P., Megalhaes, J., May, A., Pickering, M., Yavlinsky, A., Ruger, S.: Video retrieval using search and browsing. In: TREC Video Retrieval Evaluation Online Proceedings. (2004)
  8. Christel, M., Yang, J., Yan, R., Hauptmann, A.: Carnegie mellon university search. In: TREC Video Retrieval Evaluation Online Proceedings. (2004)
  9. Cooke, E., Ferguson, P., Gaughan, G., Gurrin, C., Jones, G., Borgue, H.L., Lee, H., Marlow, S., McDonald, K., McHugh, M., Murphy, N., O'Connor, N., O'Hare, N., Rothwell, S., Smeaton, A., Wilkins, P.: TRECVID 2004 experiments in dublin city university. In: TREC Video Retrieval Evaluation Online Proceedings. (2004)
  10. Yang, J., yu Chen, M., Hauptmann, A.: Finding person X: Correlating names with visual appearances. In et al, E., ed.: International Conference on Image and Video Retrieval, Springer (2004) 270-278
  11. Berry, M.W., Drmac, Z., Jessup, E.R.: Matrices, vector spaces, and information retrieval. SIAM Rev. 41 (1999) 335-362
  12. Ruiloba, R., Joly, P., Marchand-Maillet, S., Quénot, G.: Towards a standard pro- tocol for the evaluation of video-to-shots segmentation algorithms. In: European Workshop on Content Based Multimedia Indexing, Toulouse, France. (1999) 41-48
  13. Cooper, M.: Video segmentation combining similarity analysis and classification. In: MULTIMEDIA '04: Proceedings of the 12th annual ACM international confer- ence on Multimedia, ACM Press (2004) 252-255
  14. Gauvain, J.L., Lamel, L., Adda, G.: The LIMSI broadcast news transcription system. Speech Commun. 37 (2002) 89-108
  15. Berry, M.W., Dumais, S.T., O'Brien, G.W.: Using linear algebra for intelligent information retrieval. SIAM Rev. 37 (1995) 573-595
  16. Choi, F.Y.Y., Weimer-Hastings, P., Moore, J.: Latent semantic analysis for text segmentation. In: 6th Conference on Empirical Methods in Natural Language Processing. (2001) 109-117
  17. Cooper, M., Foote, J.: Scene boundary detection via video self-similarity analysis. In: IEEE Intl. Conf. on Image Processing. (2001) 378-381
  18. Porter, M.: An algorithm for suffix stripping. Program 14 (1980) 130-130
  19. Manning, C.D., Schütze, H.: Foundations of statistical natural language processing. MIT Press (1999)
  20. TRECVID: TREC video retrieval evaluation. Workshop (2001, 2002, 2003, 2004) http://www-nlpir.nist.gov/projects/trecvid/.
  21. Pirolli, P., Card, S.: Information Foraging. Psychological Review (1999)