Academia.eduAcademia.edu

Outline

Logic of space-time and relativity theory

2000

https://doi.org/10.1007/978-1-4020-5587-4_11

Abstract
sparkles

AI

This paper aims to provide an accessible and logical understanding of relativity theory, distinguishing between special and general relativity. It emphasizes a geometrical interpretation of gravity as the curvature of space-time and analyzes the logical framework underlying both theories. Additionally, the work explores applications to phenomena such as black holes, wormholes, and timewarps through a systematic and simplified approach, making complex concepts approachable for a broader audience.

References (81)

  1. A. D. Alexandrov. On foundations of space-time geometry. I. Soviet Math. Dokl., 15:1543-1547, 1974.
  2. H. Andréka, J. X. Madarász, and I. Németi. Logical analysis of special relativity theory. In J. Gerbrandy, M. Marx, M. de Rijke, and Y. Venema, editors, Essays dedicated to Johan van Ben- them on the occassion of his 50th birthday. Vossiuspers, Ams- terdam University Press, 1999. CD-ROM, ISBN: 90 5629 104 1, http://www.illc.uva.nl/j50.
  3. H. Andréka, J. X. Madarász, and I. Németi. On the logical structure of relativity theories. Technical report, Rényi Insti- tute of Mathematics, Budapest, 1998-2002. http://www.math- inst.hu/pub/algebraic-logic/Contents.html. With contributions from Andai, A., Sain, I., Sági, G., Tőke, Cs. and Vályi, S.
  4. H. Andréka, J. X. Madarász, and I. Németi. Logical analysis of relativity theories. In V. Hendricks, F. Neuhaus, S. A. Ped- ersen, U. Scheffler, and H. Wansing, editors, First-order Logic Revisited, pages 7-36. Logos Verlag, Berlin, 2004.
  5. H. Andréka, J. X. Madarász, and I. Németi. Logi- cal axiomatizations of space-time, 2006. Course mate- rial on the Internet, http://ftp.math-inst.hu/pub/algebraic- logic/kurzus-2006/kurzus-h-2006.htm.
  6. H. Andréka, J. X. Madarász, and I. Németi. Logical ax- iomatizations of space-time. Samples from the literature. In A. Prékopa and E. Molnár, editors, Non-Euclidean Geometries: János Bolyai Memorial Volume, volume 581 of Mathematics and Its Applications, pages 155-185. Springer Verlag, 2006.
  7. H. Andréka, I. Németi, and I. Sain. A complete logic for reason- ing about programs via nonstandard model theory, Parts I-II. Theoretical Computer Science, 17:193-212, 259-278, 1982.
  8. H. Andréka, I. Németi, and I. Sain. Algebraic Logic. In D. M. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 2, pages 133-247. Kluwer Academic Publishers, second edition, 2001. See also www.math-inst.hu/pub/algebraic- logic/handbook.pdf.
  9. H. Andréka, I. Németi, and C. Wüthrich. A twist in the ge- ometry of rotating black holes: seeking the cause of acausality. Manuscript, Budapest and Berne, 2006.
  10. M. Aiello and J. van Benthem. A modal walk through space. Journal of Applied Non-Classical Logics, 12(3-4):319-363, 2002.
  11. J. Ax. The elementary foundations of space-time. Found. Phys., 8(7-8):507-546, 1978.
  12. J. B. Barbour. Absolute or relative motion? Cambridge Univer- sity Press, 1989.
  13. S. Basri. A deductive theory of space and time. North-Holland, Amsterdam, 1966.
  14. H. Busemann. Time-like spaces, volume 53 of Dissertationes Math. (Rozprawy Math.). Mathematical Istitute of Polish Academy of Sci., 1967.
  15. C. Carathéodory. Zur Axiomatik der speziellen Rela- tivitätstheorie. Sitzungsber. phys. math., 14.:12-27, Febr. 1924.
  16. H. Casini. The logic of causally closed space-time sub- sets. Classical and Quantum Gravity, 19(24):6389-6404, 2002. http://arxiv.org/abs/gr-qc/0205013.
  17. C. C. Chang and H. J. Keisler. Model theory. North-Holland, 1973. [d'I83] R. d'Inverno. Introducing Einstein's Relativity. Oxford Univer- sity Press, 1983.
  18. J. Earman. Bangs, crunches, whimpers, and shrieks. Singulari- ties and acausalities in relativistic spacetimes. Oxford University Press, Oxford, 1995.
  19. A. Einstein. Relativity (The special and the general theory). Wings Books, New York, Avenel, New Jersey, 1961.
  20. G. Etesi and I. Németi. Non-Turing computability via Malament-Hogarth space-times. International Journal of Theo- retical Physics, 41(2):341-370, 2002.
  21. J. Ehlers, F.A.E. Pirani, and A. Shild. The geometry of free fall and light propagation. In General relativity, Papers in Honor of J.L. Synge, pages 63-84. Claredon press, Oxford, 1972.
  22. M. Friedman. Foundations of Space-Time Theories. Relativistic Physics and Philosophy of Science. Princeton University Press, 1983.
  23. H. Friedman. On foundational thinking 1, Posting in FOM (Foundations of Mathematics). Archives www.cs.nyu.edu, Jan- uary 20 2004.
  24. K. Gödel. An example of a new type of cosmological solutions of Einstein's field equations of gravitation. Reviews of Modern Physics, 21:447-450, 1949.
  25. R. Goldblatt. Diodorean modality in Minkowski spacetime. Stu- dia Logica, 39:219-236, 1980.
  26. R. Goldblatt. Orthogonality and space-time Geometry. Springer- Verlag, 1987.
  27. A. K. Guts. Axiomatic relativity theory. Russian Math. Survey, 37(2):41-89, 1982.
  28. A. Hamilton. Falling into a black hole, 1997-2001. Internet page, http://casa.colorado.edu/ ajsh/schw.shtml.
  29. S. W. Hawking and G. F. R. Ellis. The large scale structure of space-time. Cambridge University Press, 1973.
  30. R. Hirsch and I. Hodkinson. Relation algebras by games. North- Holland, 2002.
  31. D. Hilbert. Grundlagen der Geometrie. Lepzig / B. G. Teubner Verlag, Stuttgart, 1899/1977.
  32. HMT + 81] L. Henkin, J. D. Monk, A. Tarski, H. Andréka, and I. Németi. Cylindric Set Algebras, volume 883 of Lecture Notes in Mathe- matics. Springer-Verlag, Berlin, 1981.
  33. L. Henkin, J. D. Monk, and A. Tarski. Cylindric Algebras Part II. North-Holland, Amsterdam, 1985.
  34. W. Hodges. Model theory. Cambridge University Press, 1993.
  35. M. L. Hogarth. Deciding arithmetic using SAD computers. Brit. J. Phil. Sci., 55:681-691, 2004.
  36. R. Horváth. An Alexandrov-Zeeman type theorem and relativ- ity theory. Paper for scientific student contest, Eötvös Loránd University, Budapest, 2005.
  37. E. H. Kronheimer and R. Penrose. On the structure of causal spaces. Proc. Camb. Phil. Soc., 63:481-501, 1967.
  38. R. W. Latzer. Nondirected light signals and the structure of time. Synthese, 24:236-280, 1972.
  39. J. X. Madarász. Logic and Relativity (in the light of definability theory). PhD thesis, ELTE, Budapest, 2002. http://www.math- inst.hu/pub/ algebraic-logic/Contents.html.
  40. M. Makkai. Duality and definability in first order logic. Number 503 in Memoirs of the AMS. AMS, 1993.
  41. J. X. Madarász, I. Németi, and G. Székely. First-order logic foundation of relativity theories. In New Logics for the XXIst Century II, Mathematical Problems from Applied Logics, vol- ume 5 of International Mathematical Series. Springer, 2006. To appear. philsci-archive.pitt.edu/archive/00002726/.
  42. J. X. Madarász, I. Németi, and G. Székely. Twin paradox and the logical foundation of relativity theory. Foundations of Physics, 36(5):681-714, 2006. www.arxiv.org/abs/gr-qc/0504118.
  43. J. X. Madarász, I. Németi, and Cs. Tőke. On generalizing the logic-approach to space-time towards general relativity: first steps. In V. Hendricks, F. Neuhaus, S. A. Pedersen, U. Schef- fler, and H. Wansing, editors, First-order Logic Revisited, pages 225-268. Logos Verlag, Berlin, 2004.
  44. C. W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. Freeman and Co, New York, 1970. Twentieth Printing 1997.
  45. J. Mundy. The philosophical content of Minkowski geometry. Britisch J. Philos. Sci., 37(1):25-54, 1986.
  46. I. Németi and H. Andréka. Can general relativistic computers break the Turing barrier? In A. Beckmann, U. Berger, B. Loewe, and J. V. Tucker, editors, Logical Approaches to Computational Barriers, Second Conference on Computability in Europe, CiE 2006, Swansea, UK, July 2006, Proceedings, volume 3988 of Lec- ture Notes in Computer Science, pages 398-412. Springer-Verlag, Berlin-Heidelberg, 2006.
  47. I. Németi and Gy. Dávid. Relativistic computers and the Turing barrier. Applied Mathematics and Computation, 178:118-142, 2006.
  48. P. Nicholls, editor. The science in science fiction. Crescent Books, New York, 1982.
  49. I. D. Novikov. The river of time. Cambridge University Press, 1998. [O'N95] B. O'Neill. The geometry of Kerr black holes. A K Peters, 1995.
  50. V. Pambuccian. Alexandrov-Zeeman type theorems expressed in terms of definability. Aequationes Mathematicae, 2006. to appear.
  51. R. Penrose. The road to reality. A complete guide to the laws of the Universe. Jonathan Cape, London, 2004.
  52. H. Reichenbach. Axiomatization of the theory of relativity. Uni- versity of California Press, Berkeley, 1969. Translated by M. Reichenbach. Original German edition published in 1924.
  53. W. Rindler. Relativity. Special, General and Cosmological. Ox- ford University Press, 2001.
  54. A. A. Robb. A Theory of Time and Space. Cambridge Univer- sity Press, 1914. Revised edition, Geometry of Time and Space, published in 1936.
  55. I. Sain. Nonstandard dynamic logic. Dissertation for candidate's degree, Hungarian Academy of Sciences, Budapest, 1986. In Hungarian.
  56. J. W. Schutz. Independent axioms for Minkowski space-time.
  57. Longoman, London, 1997.
  58. S. G. Simpson, editor. Reverse Mathematics 2001. Lecture Notes in Logic,. Association for Symbolic Logic, 2005. pp. x+401.
  59. L Smolin. Three roads to quantum gravity. Basic Books, 2001.
  60. V. Shehtman and I. Shapirovsky. Chronological future modal- ity in Minkowski space-time. In Advances in Modal Logic-2002, pages 437-459. King's College Publications, London, 2003.
  61. W. Schwabhäuser, W. Szmielew, and A. Tarski. Metamathe- matische Methoden in der Geometrie. Springer-Verlag, Berlin, 1983. Hochschul text, viii+482pp.
  62. P. Suppes. Axioms for relativistic kinematics with or without parity. In L. Henkin, A. Tarski, and P. Suppes, editors, Sympo- sium on the Axiomatic Method with Special Reference to Geom- etry and Physics, pages 291-307. North-Holland, 1959.
  63. P. Suppes. The desirability of formalization in science. The Journal of Philosophy, 27:651-664, 1968.
  64. P. Suppes. Some open problems in the philosophy of space and time. Synthese, 24:298-316, 1972.
  65. L. E. Szabó. The Problem of Open Future, Determinism in the light of relativity and quantum theory. Typotex, Budapest, 2002.
  66. L. E. Szabó. Empiricist studies on special relativity theory, 2006. Book manuscript, Budapest.
  67. L.W. Szczerba. Independence of Pasch's axiom. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 18:491-498, 1970.
  68. G. Szekeres. Kinematic geometry: an axiomatic system for Min- kowski space-time. Journal of the Australian Mathematical So- ciety, 8:134-160, 1968.
  69. W. Szmielew. The role of the Pasch axiom in the foundations of Euclidean Geometry. In Proc. of the Tarski Symp. held in Berkeley in 1971, pages 123-132. Providence, RI, 1974.
  70. A. Tarski. What is elementary geometry? In L. Henkin, A. Tarski, and P. Suppes, editors, Symposium on the Axiomatic Method with Special Reference to Geometry and Physics, pages 16-29. North-Holland, 1959.
  71. A. Tarski and S. Givant. A formalization of set theory without variables, volume 41 of AMS Colloquium Publications. Provi- dence, RI, 1987.
  72. K. Thorne. Black holes and time warps. Einstein's outrageous legacy. W. W. Norton and Company, 1994.
  73. E. F. Taylor and J. A. Wheeler. Exploring Black Holes. Intro- duction to General Relativity. Addison Wesley Longman, 2000.
  74. J. F. A. K. van Benthem. The logical study of science. Synthese, 51:431-472, 1982.
  75. J. F. A. K. van Benthem. The logic of time, volume 156 of Synthese Library. Reidel Pub. Co., Dordrecht, 1983.
  76. J. A. F. K. van Benthem. Exploring logical dynamics. Studies in Logic, Language and Information. CSLI Publications, Stanford, 1996.
  77. A. G. Walker. Axioms for Cosmology,. In L. Henkin, A. Tarski, and P. Suppes, editors, Symposium on the Axiomatic Method with Special Reference to Geometry and Physics, pages 308-321. North-Holland, 1959.
  78. R. M. Wald. General Relativity. The University of Chicago Press, 1984.
  79. J. A. Winnie. The causal theory of space-time. In J. S. Earman, C. N. Glymour, and J. J. Stachel, editors, Foundations of space- time Theories, pages 134-205. University of Minnesota Press, 1977.
  80. C. Wüthrich. On time machines in Kerr-Newman spacetime. Master's thesis, University of Berne, 1999.
  81. Hajnal Andréka, Judit X. Madarász and István Németi andreka@renyi.hu, madarasz@renyi.hu, nemeti@renyi.hu Rényi Mathematical Research Institute Budapest P.O.Box 127, H-1364 Hungary