Abstract
The universal R-matrix for a class of esoteric (non-standard) quantum groups U q (gl(2N + 1)) is constructed as a twisting of the universal R-matrix R S of the Drinfeld-Jimbo quantum algebras. The main part of the twisting element F is chosen to be the canonical element of appropriate pair of separated Hopf subalgebras (quantized Borel's B(N ) ⊂ U q (gl(2N + 1))), providing the factorization property of F. As a result, the esoteric quantum group generators can be expressed in terms of the Drinfeld-Jimbo ones.
References (27)
- Drinfeld, V. G.: Quantum groups, in: A. V. Gleason, (ed), Proc. Inter. Congr. Mathematicians, Berkeley, 1986, AMS, Providence, (1987), pp. 798-820
- Jimbo, M.: A q-analogue of U(gl(N + 1)), Hecke algebra and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), 247-252.
- Reshetikhin, N. Yu., Takhtajan, L. A. and Faddeev, L.D.: Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-225.
- Flato, M. and Sternheimer, D.: On a possible origin of quantum groups, Lett. Math. Phys. 22 (1991), 155-160.
- Fronsdal, C.: Generalization and exact deformations of quantum groups, Publ. RIMS, Kyoto Univ. 33 (1997), 91-149;
- Jimbo, M., Konno, H., Odake, S. and Shiraishi, J.: Quasi-Hopf twistors for elliptic quantum groups, q-alg/9712029;
- Arnaudon, D., Buffenoire, E., Ragoucy, E. and Roche, Ph.: Universal solutions of quantum dynamical Yang-Baxter equations, q-alg/9712037.
- Fronsdal, C. and Galindo, A.: The universal T -matrix, Contemp. Math. 175 (1994), 73-88.
- Fronsdal, C. and Galindo, A.: Deformation of multiparameter quantum gl(n), Lett. Math. Phys. 34 (1995), 25-36.
- Hodges, T.: On the Cremmer-Gervais quantization of SL(n), q-alg/9506018.
- Hodges, T.: Nonstandard quantum groups associated to certain Belavin-Drinfeld triples, q-alg/9609029.
- Jacobs, A. D. and Cornwell, J. F.: Twisting 2-cocycles for the construction of new non-standard quantum groups, q-alg/9702028.
- Cremmer, E. and Gervais, J.-L.: The quantum group structure associated with non-linearly extended Virasoro algebras, Comm. Math. Phys. 134 (1990), 619- 632.
- Chari, V. and Pressley, A.: A Guide to Quantum Groups, CUP, 1994.
- Drinfeld, V. G.: Quasi-Hopf algebras, Leningrad Math. J. 1 (1990), 1419-1457.
- Etingof, P. and Kazhdan, D.: Quantiztion of Lie bialgebra, I, preprint, Harvard University, 1996.
- Drinfeld V.G.: On constant quasiclassical solutions to the quantum Yang-Baxter equation, DAN USSR, 273 (3) (1983), 531 -535.
- Reshetikhin, N. Yu. and Semenov-Tian-Shansky, M. A.: Quantum R-matrices and factorization problems, J.Geom.Phys. 5 (4) (1988), 533-550.
- Reshetikhin, N. Yu.: Multiparametric quantum groups and twisted quasitrian- gular Hopf algebras, Lett. Math. Phys. 20 (1990), 331 -335.
- Mudrov, A. I.: Quantum deformations of the Lorentz algebra, Phys. Atom. Nucl. 60 (5) (1997), 848-859.
- Rosso, M.: An analogue of the P.B.W. theorem and the universal R-matrix U h sl(N + 1), Comm. Math. Phys. 124 (1989), 307-318.
- Kirillov, A.N. and Reshetikhin, N.Yu.: q-Weyl group and a multiplicative formula for universal R-matrices, Comm. Math. Phys. 134 (1990), 421-431.
- Levendorskii, S. Z. and Soibelman, Ya. S.: The quantum Weyl group and a mul- tiplicative formula for the R-matrix of a simple Lie algebra, Func. Anal. Appl. 25 (1991), 143-145.
- Khoroshkin, S.M. and Tolstoy, V.N.: Universal R-matrix for quantized (super) algebras, Comm. Math. Phys. 141 (1991), 559-617.
- Tanisaki, T.: Killing forms, Harish-Chandra isomorphysms, and universal R- matrices for quantum algebras, Int. J. Mod. Phys. A 7, Supp. 1B (1992), 941- 961.
- Kulish, P.P. and Stolin, A.A.: Deformed Yangians and integrable models, Czech. J. Phys. 47 (12) (1997), 1207-1212;
- Chaichian, M., Kulish, P.P. and Damaskinsky, E.V.: Dynamical systems related to the Cremmer-Gervais R-matrix, Teor. Mat. Fiz. 121 (1998) (to be published), q-alg/9712016.