Academia.eduAcademia.edu

Outline

Improved Algorithms for Theory Revision with Queries

Abstract

We give a revision algorithm for monotone DNF formulas in the general revision model (additions and deletions of variables) that uses Ç´Ñ ¿ ÐÓ Òµ queries, where Ñ is the number of terms, the revision distance to the target formula, and Ò the number of variables. We also give an algorithm for revising 2-term unate DNF formulas in the same model, with a similar query bound. Lastly, we show that the earlier query bound on revising readonce formulas in the deletions-only model can be improved from Ç´ ÐÓ ¾ Òµ to Ç´ ÐÓ Òµ.

References (16)

  1. D. Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, Apr. 1988.
  2. D. Angluin, M. Frazier, and L. Pitt. Learning conjunc- tions of Horn clauses. Machine Learning, 9:147-164, 1992.
  3. A. Blum, L. Hellerstein, and N. Littlestone. Learning in the presence of finitely or infinitely many irrelevant attributes. J. of Comput. Syst. Sci., 50(1):32-40, 1995. Earlier version in 4th COLT, 1991.
  4. N. Bshouty and L. Hellerstein. Attribute-efficient learning in query and mistake-bound models. J. Com- put. Syst. Sci., 56:310-319, 1998.
  5. R. Davis and W. Hamscher. Model-based reasoning: Troubleshooting. In H. E. Shrobe and the American Association for Artificial Intelligence, editors, Explor- ing Artificial Intelligence: Survey Talks from the Na- tional Conferences on Artificial Intelligence, chapter 8, pages 297-346. Morgan Kaufmann, San Mateo, CA, 1988.
  6. J. Goldsmith and R. H. Sloan. More theory revision with queries. In Proc. 32nd Annu. ACM Sympos. The- ory Comput., 2000. To appear.
  7. Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, New York, NY, second edition, 1978.
  8. M. Koppel, R. Feldman, and A. M. Segre. Bias-driven revision of logical domain theories. Journal of Artifi- cial Intelligence Research, 1:159-208, 1994.
  9. J. de Kleer, A. K. Mackworth, and R. Reiter. Charac- terizing diagnoses and systems. Artificial Intelligence, 56:197-222, 1992.
  10. R. J. Mooney. A preliminary PAC analysis of theory revision, volume III: Selecting Good Models, chapter 3, pages 43-53. MIT Press, 1995.
  11. D. Ourston and R. J. Mooney. Theory refinement com- bining analytical and empirical methods. Artificial In- telligence, 66:273-309, 1994.
  12. B. L. Richards and R. J. Mooney. Automated refine- ment of first-order Horn-clause domain theories. Ma- chine Learning, 19:95-131, 1995.
  13. E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, MA, 1983.
  14. R. H. Sloan and G. Turán. On theory revision with queries. In Proc. 12th Annu. Conf. on Comput. Learn- ing Theory, pages 41-52. ACM Press, New York, NY, 1999.
  15. B. Szörényi. Revision algorithms in computational learning theory. Scientific Student Competition, Uni- versity of Szeged, 31 pages, 2000. (In Hungarian.).
  16. G. G. Towell and J. W. Shavlik. Extracting refined rules from knowledge-based neural networks. Machine Learning, 13:71-101, 1993.