Academia.eduAcademia.edu

Outline

A New Approach to Predicative Set Theory

2010

https://doi.org/10.1515/9783110324907.31

Abstract

We suggest a new basic framework for the Weyl-Feferman predicativist program by constructing a formal predicative set theory P ZF which resembles ZF . The basic idea is that the predicatively acceptable instances of the comprehension schema are those which determine the collections they define in an absolute way, independent of the extension of the "surrounding universe". This idea is implemented using syntactic safety relations between formulas and sets of variables. These safety relations generalize both the notion of domain-independence from database theory, and Godel notion of absoluteness from set theory. The language of P ZF is type-free, and it reflects real mathematical practice in making an extensive use of statically defined abstract set terms. Another important feature of P ZF is that its underlying logic is ancestral logic (i.e. the extension of FOL with a transitive closure operation).

References (51)

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases, Addison- Wesley, 1995.
  2. Avron A., Transitive Closure and the mechanization of Mathematics, In Thirty Five Years of Automating Mathematics (F. Kamareddine, ed.), 149-171, Kluwer Academic Publishers, 2003.
  3. Avron A., Safety Signatures for First-order Languages and Their Applications, In First-Order Logic Revisited (Hendricks et all,, eds.), 37-58, Logos Verlag Berlin, 2004.
  4. Avron A., Formalizing Set Theory as It Is Actually Used, In Proceedings of Mathematical Knowledge Management (MKM 2004) (A. Asperti, G. Banecerek, and A. Trybulec, eds.), 32-43, LNCS 3119, Springer, 2004.
  5. Avron A., A Framework for Formalizing Set Theories Based on the Use of Static Set Terms, In Pillars of Computer Science, (A. Avron, N. Dershowitz, and A. Rabinovich, eds.), 87-106, LNCS 4800, Springer, 2008.
  6. Avron A., Constructibility and Decidability versus Domain Independence and Absoluteness, Theoretical Computer Science 394 (2008), pp. 144-158 (http://dx.doi.org/10.1016/j.tcs.2007.12.008).
  7. Barwise J., Admissible Sets and Structures, Springer, 1975.
  8. Cantone D., Ferro A., and Omodeo E., Computable Set Theory, Clarendon Press, Oxford, 1989.
  9. Cantone D., Omodeo E., and Policriti A., Set Theory for Computing: From Decisions Procedures to Declarative Programming with Sets, Springer, 2001.
  10. K. J. Devlin, Constructibility, Perspectives in Mathematical Logic, Springer- Verlag, 1984.
  11. Y. L. Ershov, Definability and Computability, Siberian School of Algebra and Logic, Consultants Bureau, New-York, 1996.
  12. Ewald W., From Kant to Hilbert, Clarendon Press, London (1996).
  13. Ebbinghaus H. D., and Flum J., Finite Model Theory (2nd ed.), Perspectives in Mathematical Logic, Springer, 1999.
  14. A. Fraenkel, Y. Bar-Hillel, and A. Levy, Foundations of Set Theory, North- Holland, Amsterdam, 1973.
  15. Feferman S., Systems of Predicative Analysis I, Journal of Symbolic Logic 29 (1964), pp. 1-30.
  16. Feferman S., Predicative Provability in Set Theory, Bulletin of the American Mathematical Society 72 (1966), pp. 486-489.
  17. Feferman S., Systems of Predicative Analysis II, Journal of Symbolic Logic 29 (1968), pp. 193-220.
  18. Feferman S., Predicatively Reducible Systems of Set Theory, in Axiomatic Set Theory Proceedings of Symposia in Pure Mathematics, Vol. 13, Part 2, pp. 11-32, American Mathematical Society, Providence, 1974.
  19. Feferman S., A More Perspicuous Formal System for Predicativity, In Konstruktionen versus Positionen, beitrage zur Diskussion um die Konstruktive Wissenschaftstheorie (K. Lorenz, ed.), Walter de Gruyter, Berlin, 1978.
  20. Feferman S., Weyl Vindicated: Das Kontinuum seventy years later, In Remi e prospettive della logica e della scienza contemporanee, vol. I. (C. Celluci and G. Sambin, eds.), Cooperative Libraria Universitaria Editrice, Bologna (1988); Reprinted in [22].
  21. Feferman S., Finitary Inductively Presented Logics, in: Logic Colloquium 1988 (1989), Amsterdam, North-Holland, pp. 191-220. Reprinted in [24], pp. 297- 328.
  22. Feferman S., In the Light of Logic, Oxford University Press, Oxford (1998).
  23. Feferman S., and Hellman G., Predicative Foundations of Arithmetics, Journal Of Philosophical Logic 24 (1995), pp. 1-17.
  24. Gabbay D., editor, What is a Logical System? Oxford Science Publications, Clarendon Press, Oxford, 1994.
  25. Gandy, R. O., Set-theoretic functions for elementary syntax, In Axiomatic set theory, Part 2, AMS, Providence, Rhode Island, 103-126, 1974.
  26. Gentzen G., Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie, Forschungen zur Logik, N.S., No. 4, pp. 19-44 (English translation in: The collected work of Gerhard Gentzen, edited by M.E. Szabo, North- Holland, Amsterdam, (1969)).
  27. K. Gödel, The Consistency of the Continuum Hypothesis, Annals of Mathematical Studies, No. 3, Princeton University Press, Princeton, N.J., 1940.
  28. Grädel E., On Transitive Closure Logic, in: Computer Science Logic (Bern 1991), Springer LNCS 626, 1992, pp. 149-163.
  29. Gurevich Y., Logic and the Challenge of Computer Science, in: Börger E., ed., Trends in Theoretical Computer Science, Computer Science Press Inc., Rockville, Maryland, USA (1988), pp. 1-58.
  30. Immerman, N., Languages which Capture Complexity Classes, in: 15th Symposium on Theory of Computing, Association for Computing Machinery (1983), pp. 347-354.
  31. Jäger G., Theories for Admissible Sets: a Unifying Approach to Proof Theory, Bibliopolis, Naples, 1986.
  32. R. B. Jensen, The Fine Structure of the Constructible Hierarchy, Annals of Mathematical Logic 4, pp. 229-308, 1972.
  33. Kunen K., Set Theory: an Introduction to Independence Proofs, North- Holland, Amsterdam, 1980.
  34. Myhill J., A Derivation of Number Theory from Ancestral Theory, Journal of Symbolic Logic 17, pp. 192-297, 1952.
  35. Poincaré H., Les Mathématiques et la Logique, II, III, Revue de Métaphysique et Morale 14 (1906), pp. 17-34, 294-317; translated in [12].
  36. Poincaré H., Dernière Pensées, Flammarion, Paris (1913); trans. by J. Bolduc as Mathematics and Science: Last Essays, Dover Press, New-York (1963).
  37. Ramsey F., The foundations of mathematics, Proceedings of the London Mathematical Society, 2nd series, 25(5), 1925.
  38. Richard, J., Letter à Monnsieur le rédacteur de la Revue général de Sciences. Acta Mathematica, 30, pp. 295-96. 1905
  39. Russelll B., Les Paradoxes de la logique, Revue de Métaphisique et de Morale, 14, (September 1906) Part of an exchange with Poincaré. English version entitled "On 'Insolubilia' and their Solution by Symbolic Logic" (chapter 9 of [41]).
  40. Russelll B., Mathematical Logic as based on a theory of logical types, Am. Journal of Mathematics 30, 1908.
  41. Russelll B. Essays in Analysis, edited by D. Lackey, Braziller New York, 1973.
  42. Sanchis L. E., Set Theory -An Operational Approach, Gordon and Breach Scientific Publishers, 1996.
  43. V. Y. Sazonov, On Bounded Set Theory, Proceedings of the 10th International Congress on Logic, Methodology and Philosophy of Sciences, Florence, August 1995, in Volume I: Logic and Scientific Method, Kluwer Academic Publishers, 85-103, 1997.
  44. Schütte K., Predicative Well-ordering, in Formal Systems and Recursive Functions (J. Crossley and M. Dummett, eds.), North-Holland, pp. 279-302.
  45. Schütte K., Proof Theory, Springer-Verlag, 1977.
  46. Shoenfield J. R., Mathematical Logic, Addison-Wesley, 1967.
  47. Shapiro S., Foundations Without Foundationalism: A Case for Second- order Logic, Oxford University Press, Oxford, 1991.
  48. Ullman, J.D.: Principles of database and knowledge-base systems, Computer Science Press, 1988.
  49. Weaver N., Mathematical Conceptualism, unpublished manuscript (available from http://www.math.wustle.edu/nweaver/concept.pdf).
  50. Weyl H., Das Kontinuum: Kritische Untersuchungen über die Grundlagen der Analysis, Veit, Leipzig (1918).
  51. Whitehead A., and Russell B., Principia Mathematica, vols. I, II, and III, Cambridge University Press, Cambridge (1910-13); 2nd edition, Cambridge University Press, Cambridge (1925-27).